Improving mining of medical data by outliers prediction

V. Podgorelec, M. Heričko, I. Rozman
{"title":"Improving mining of medical data by outliers prediction","authors":"V. Podgorelec, M. Heričko, I. Rozman","doi":"10.1109/CBMS.2005.68","DOIUrl":null,"url":null,"abstract":"In the paper a new outlier prediction method is presented that should improve the classification performance when mining the medical data. The method introduces the class confusion score metric that is based on the classification results of a set of classifiers, induced by an evolutionary decision tree induction algorithm. The classification improvement should be achieved by removing the identified outliers from a training set. Our proposition is that a classifier trained by a filtered dataset captures a better, more general knowledge model and should therefore perform better also on unseen cases. The proposed method is applied on the two cardio-vascular datasets and the obtained results are discussed.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In the paper a new outlier prediction method is presented that should improve the classification performance when mining the medical data. The method introduces the class confusion score metric that is based on the classification results of a set of classifiers, induced by an evolutionary decision tree induction algorithm. The classification improvement should be achieved by removing the identified outliers from a training set. Our proposition is that a classifier trained by a filtered dataset captures a better, more general knowledge model and should therefore perform better also on unseen cases. The proposed method is applied on the two cardio-vascular datasets and the obtained results are discussed.
利用离群值预测改进医疗数据挖掘
本文提出了一种新的离群值预测方法,以提高医学数据挖掘的分类性能。该方法引入了基于一组分类器的分类结果的类混淆评分指标,该指标由进化决策树归纳算法诱导。分类改进应该通过从训练集中去除已识别的异常值来实现。我们的主张是,通过过滤数据集训练的分类器可以捕获更好、更通用的知识模型,因此在未见的情况下也应该表现得更好。将该方法应用于两个心血管数据集,并对所得结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信