Nanograin Formation within Shear Bands in Cold-Rolled Titanium

Dengke Yang, Huimin Yang
{"title":"Nanograin Formation within Shear Bands in Cold-Rolled Titanium","authors":"Dengke Yang, Huimin Yang","doi":"10.5772/INTECHOPEN.76969","DOIUrl":null,"url":null,"abstract":"Microstructure evolution within the shear localization areas in a commercial titanium plate subjected to cold rolling was systematically investigated. A shear band with a width of approximately 25 μm was formed. The microstructure inside the shear band was mainly equiaxed nanograins with an average size of 70 nm. Transmission electron microscopy (TEM) observations revealed that the grain refinement inside the shear band was completely via a shear deformation-induced splitting and breakdown twin lamella process, instead of a nucleation and growth of new grains. The shear localization starts with the formation and multiplication of mechanical twins, which leads to the development of a twin/matrix lamellar structure aligned along the shear direction. The twin/ matrix lamellae subsequently undergo gradual splitting and transverse breakdown, giv ing rise to fine elongated subgrains. The continuing lath breakdown, in combination with grain lateral sliding and lattice rotations, ultimately leads to the formation of a mix of roughly equiaxed, nanosized (sub)grains within the center of macroscopic shear band at large strains.","PeriodicalId":108831,"journal":{"name":"Nanocrystals and Nanostructures","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocrystals and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Microstructure evolution within the shear localization areas in a commercial titanium plate subjected to cold rolling was systematically investigated. A shear band with a width of approximately 25 μm was formed. The microstructure inside the shear band was mainly equiaxed nanograins with an average size of 70 nm. Transmission electron microscopy (TEM) observations revealed that the grain refinement inside the shear band was completely via a shear deformation-induced splitting and breakdown twin lamella process, instead of a nucleation and growth of new grains. The shear localization starts with the formation and multiplication of mechanical twins, which leads to the development of a twin/matrix lamellar structure aligned along the shear direction. The twin/ matrix lamellae subsequently undergo gradual splitting and transverse breakdown, giv ing rise to fine elongated subgrains. The continuing lath breakdown, in combination with grain lateral sliding and lattice rotations, ultimately leads to the formation of a mix of roughly equiaxed, nanosized (sub)grains within the center of macroscopic shear band at large strains.
冷轧钛剪切带内纳米晶粒的形成
系统地研究了商用钛板冷轧剪切局部化区的组织演变。形成了宽度约为25 μm的剪切带。剪切带内的微观组织主要为等轴纳米晶粒,平均尺寸为70 nm。透射电镜(TEM)观察表明,剪切带内的晶粒细化完全是通过剪切变形引起的分裂和击穿孪晶片层过程,而不是新晶粒的形核和生长。剪切局部化始于机械孪晶的形成和增殖,导致沿剪切方向排列的孪晶/基体片层结构的发展。随后,孪晶/基体片层逐渐发生分裂和横向破坏,形成细而细长的亚晶。板条的持续破坏,加上晶粒横向滑动和晶格旋转,最终导致在大应变下宏观剪切带中心形成大致等轴的纳米级(亚)晶粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信