Micro Stripes Analyses for Iris Presentation Attack Detection

Meiling Fang, N. Damer, Florian Kirchbuchner, Arjan Kuijper
{"title":"Micro Stripes Analyses for Iris Presentation Attack Detection","authors":"Meiling Fang, N. Damer, Florian Kirchbuchner, Arjan Kuijper","doi":"10.1109/IJCB48548.2020.9304886","DOIUrl":null,"url":null,"abstract":"Iris recognition systems are vulnerable to the presentation attacks, such as textured contact lenses or printed images. In this paper, we propose a lightweight framework to detect iris presentation attacks by extracting multiple micro-stripes of expanded normalized iris textures. In this procedure, a standard iris segmentation is modified. For our Presentation Attack Detection (PAD) network to better model the classification problem, the segmented area is processed to provide lower dimensional input segments and a higher number of learning samples. Our proposed Micro Stripes Analyses (MSA) solution samples the segmented areas as individual stripes. Then, the majority vote makes the final classification decision of those micro-stripes. Experiments are demonstrated on five databases, where two databases (IIITD-WVU and Notre Dame) are from the LivDet-2017 Iris competition. An in-depth experimental evaluation of this framework reveals a superior performance compared with state-of-the-art (SoTA) algorithms. Moreover, our solution minimizes the confusion between textured (attack) and soft (bona fide) contact lens presentations.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Iris recognition systems are vulnerable to the presentation attacks, such as textured contact lenses or printed images. In this paper, we propose a lightweight framework to detect iris presentation attacks by extracting multiple micro-stripes of expanded normalized iris textures. In this procedure, a standard iris segmentation is modified. For our Presentation Attack Detection (PAD) network to better model the classification problem, the segmented area is processed to provide lower dimensional input segments and a higher number of learning samples. Our proposed Micro Stripes Analyses (MSA) solution samples the segmented areas as individual stripes. Then, the majority vote makes the final classification decision of those micro-stripes. Experiments are demonstrated on five databases, where two databases (IIITD-WVU and Notre Dame) are from the LivDet-2017 Iris competition. An in-depth experimental evaluation of this framework reveals a superior performance compared with state-of-the-art (SoTA) algorithms. Moreover, our solution minimizes the confusion between textured (attack) and soft (bona fide) contact lens presentations.
虹膜表示攻击检测的微条纹分析
虹膜识别系统很容易受到诸如纹理隐形眼镜或打印图像的攻击。在本文中,我们提出了一个轻量级框架,通过提取扩展归一化虹膜纹理的多个微条纹来检测虹膜呈现攻击。在这个过程中,一个标准的虹膜分割被修改。为了更好地对分类问题建模,我们的表示攻击检测(PAD)网络对分割区域进行了处理,以提供更低维的输入段和更多的学习样本。我们提出的微条纹分析(MSA)解决方案将分割区域作为单个条纹进行采样。然后,多数人投票决定这些微条纹的最终分类决定。实验在五个数据库上进行了演示,其中两个数据库(IIITD-WVU和Notre Dame)来自livet -2017 Iris竞赛。对该框架的深入实验评估表明,与最先进的(SoTA)算法相比,该框架具有优越的性能。此外,我们的解决方案最大限度地减少了纹理(攻击)和软(真实)隐形眼镜之间的混淆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信