{"title":"Fully Transient Model of a Hydraulic Accumulator","authors":"Filipp Kratschun, Andris Rambaks, K. Schmitz","doi":"10.1115/imece2019-11343","DOIUrl":null,"url":null,"abstract":"\n Hydraulic piston accumulators play a major role especially within the field of stationary hydraulics. The calculation of the amount of hydraulic energy which can be stored in such an accumulator is crucial when it comes to a precise system design. The knowledge of the temperature within the accumulator is required in order to calculate the amount of energy to be stored.\n This paper presents a simulation approach with the goal to simulate the gaseous phase within a piston accumulator and to present results for the polytropic exponent without conducting costly experiments. The temperature, pressure, density and velocity profiles inside of the gaseous phase as well as the temperature profile inside the boundaries are calculated transiently in order to achieve that goal.\n The effects of dissipation, heat transfer and transient wall temperature are added to the simulation routine continuously and their effects on the results are discussed in detail.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Hydraulic piston accumulators play a major role especially within the field of stationary hydraulics. The calculation of the amount of hydraulic energy which can be stored in such an accumulator is crucial when it comes to a precise system design. The knowledge of the temperature within the accumulator is required in order to calculate the amount of energy to be stored.
This paper presents a simulation approach with the goal to simulate the gaseous phase within a piston accumulator and to present results for the polytropic exponent without conducting costly experiments. The temperature, pressure, density and velocity profiles inside of the gaseous phase as well as the temperature profile inside the boundaries are calculated transiently in order to achieve that goal.
The effects of dissipation, heat transfer and transient wall temperature are added to the simulation routine continuously and their effects on the results are discussed in detail.