Omni-directional face detection based on real AdaBoost

Chang Huang, Bo Wu, H. Ai, S. Lao
{"title":"Omni-directional face detection based on real AdaBoost","authors":"Chang Huang, Bo Wu, H. Ai, S. Lao","doi":"10.1109/ICIP.2004.1418824","DOIUrl":null,"url":null,"abstract":"We propose an omni-directional face detection method based on the confidence-rated AdaBoost algorithm, called real AdaBoost, proposed by R.E. Schapire and Y. Singer (see Machine Learning, vol.37, p.297-336, 1999). To use real AdaBoost, we configure the confidence-rated look-up-table (LUT) weak classifiers based on Haar-type features. A nesting-structured framework is developed to combine a series of boosted classifiers into an efficient object detector. For omni-directional face detection, our method has achieved a rather high performance and the processing speed can reach 217 ms per 320/spl times/240 image. Experiment results on the CMU+MIT frontal and the CMU profile face test sets are reported to show its effectiveness.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1418824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We propose an omni-directional face detection method based on the confidence-rated AdaBoost algorithm, called real AdaBoost, proposed by R.E. Schapire and Y. Singer (see Machine Learning, vol.37, p.297-336, 1999). To use real AdaBoost, we configure the confidence-rated look-up-table (LUT) weak classifiers based on Haar-type features. A nesting-structured framework is developed to combine a series of boosted classifiers into an efficient object detector. For omni-directional face detection, our method has achieved a rather high performance and the processing speed can reach 217 ms per 320/spl times/240 image. Experiment results on the CMU+MIT frontal and the CMU profile face test sets are reported to show its effectiveness.
基于真实AdaBoost的全方位人脸检测
我们提出了一种基于置信度的AdaBoost算法的全方位人脸检测方法,称为real AdaBoost,由R.E. Schapire和Y. Singer提出(参见《机器学习》,vol.37, p.297-336, 1999)。为了使用真正的AdaBoost,我们配置了基于haar类型特征的置信度查找表(LUT)弱分类器。开发了一个嵌套结构框架,将一系列增强分类器组合成一个高效的目标检测器。对于全向人脸检测,我们的方法达到了相当高的性能,处理速度可以达到每320/spl次/240张图像217 ms。在CMU+MIT正面和CMU剖面面测试集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信