{"title":"A framework for cost-effective dependence-based dynamic impact analysis","authors":"Haipeng Cai, Raúl A. Santelices","doi":"10.1109/SANER.2015.7081833","DOIUrl":null,"url":null,"abstract":"Dynamic impact analysis can greatly assist developers with managing software changes by focusing their attention on the effects of potential changes relative to concrete program executions. While dependence-based dynamic impact analysis (DDIA) provides finer-grained results than traceability-based approaches, traditional DDIA techniques often produce imprecise results, incurring excessive costs thus hindering their adoption in many practical situations. In this paper, we present the design and evaluation of a DDIA framework and its three new instances that offer not only much more precise impact sets but also flexible cost-effectiveness options to meet diverse application needs such as different budgets and levels of detail of results. By exploiting both static dependencies and various dynamic information including method-execution traces, statement coverage, and dynamic points-to data, our techniques achieve that goal at reasonable costs according to our experiment results. Our study also suggests that statement coverage has generally stronger effects on the precision and cost-effectiveness of DDIA than dynamic points-to data.","PeriodicalId":355949,"journal":{"name":"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2015.7081833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Dynamic impact analysis can greatly assist developers with managing software changes by focusing their attention on the effects of potential changes relative to concrete program executions. While dependence-based dynamic impact analysis (DDIA) provides finer-grained results than traceability-based approaches, traditional DDIA techniques often produce imprecise results, incurring excessive costs thus hindering their adoption in many practical situations. In this paper, we present the design and evaluation of a DDIA framework and its three new instances that offer not only much more precise impact sets but also flexible cost-effectiveness options to meet diverse application needs such as different budgets and levels of detail of results. By exploiting both static dependencies and various dynamic information including method-execution traces, statement coverage, and dynamic points-to data, our techniques achieve that goal at reasonable costs according to our experiment results. Our study also suggests that statement coverage has generally stronger effects on the precision and cost-effectiveness of DDIA than dynamic points-to data.