Stereo Matching Using Gabor Convolutional Neural Network

Zhendong Liu, Qinglei Hu, Jiachen Liu, Baochang Zhang
{"title":"Stereo Matching Using Gabor Convolutional Neural Network","authors":"Zhendong Liu, Qinglei Hu, Jiachen Liu, Baochang Zhang","doi":"10.1109/HFR.2018.8633525","DOIUrl":null,"url":null,"abstract":"Stereo matching is important to many robot applications. Recent work has shown that we can use convolutional neural networks (CNNs) to compute disparity map from a stereo image pair directly. However, current methods don’t take the problem of geometric deformation caused by perspective projection into account. To address the problem, we design a new model that utilizes Gabor convolutional neural networks (Gabor CNNs) in the feature extraction part of the network architecture. In Gabor CNNs, the learned filters from ordinary CNNs are modulated by the Gabor filters, which can enhance their abilities to address the problem of geometric deformations. Finally, we test our model on KITTI and Scene Flow datasets. The results show that our model outperforms the ordinary model that uses ordinary CNNs by a large margin.","PeriodicalId":263946,"journal":{"name":"2018 11th International Workshop on Human Friendly Robotics (HFR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Workshop on Human Friendly Robotics (HFR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HFR.2018.8633525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stereo matching is important to many robot applications. Recent work has shown that we can use convolutional neural networks (CNNs) to compute disparity map from a stereo image pair directly. However, current methods don’t take the problem of geometric deformation caused by perspective projection into account. To address the problem, we design a new model that utilizes Gabor convolutional neural networks (Gabor CNNs) in the feature extraction part of the network architecture. In Gabor CNNs, the learned filters from ordinary CNNs are modulated by the Gabor filters, which can enhance their abilities to address the problem of geometric deformations. Finally, we test our model on KITTI and Scene Flow datasets. The results show that our model outperforms the ordinary model that uses ordinary CNNs by a large margin.
基于Gabor卷积神经网络的立体匹配
立体匹配在许多机器人应用中非常重要。最近的研究表明,我们可以使用卷积神经网络(cnn)直接从立体图像对中计算视差映射。然而,目前的方法没有考虑到透视投影引起的几何变形问题。为了解决这个问题,我们设计了一个新的模型,在网络架构的特征提取部分利用Gabor卷积神经网络(Gabor cnn)。在Gabor cnn中,从普通cnn中学习到的滤波器被Gabor滤波器调制,这可以增强其处理几何变形问题的能力。最后,我们在KITTI和Scene Flow数据集上测试了我们的模型。结果表明,我们的模型大大优于使用普通cnn的普通模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信