Reconstruction-based Multi-Scale Anomaly Detection for Cyber-Physical Systems

Zhaocai Dong, Kun Liu, Dongyu Han, Yuan Cao, Yuanqing Xia
{"title":"Reconstruction-based Multi-Scale Anomaly Detection for Cyber-Physical Systems","authors":"Zhaocai Dong, Kun Liu, Dongyu Han, Yuan Cao, Yuanqing Xia","doi":"10.1109/IAI55780.2022.9976844","DOIUrl":null,"url":null,"abstract":"This paper considers anomaly detection for cyber-physical systems, in which the multivariate time series data collected from different sensors have complex temporal dependencies and inter-sensor correlations. We firstly propose an improved unsupervised anomaly detection framework which extracts the temporal and spatial patterns based on the autoencoder and the attention-based convolutional long-short term memory networks. In particular, the original data are fused into the input signature matrices to avoid information loss and an improved sample-based threshold setting approach is proposed to estimate the optimal threshold automatically. Finally, the experiments on two sensor datasets illustrate that our model achieves superior performance over state-of-the-art methods.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers anomaly detection for cyber-physical systems, in which the multivariate time series data collected from different sensors have complex temporal dependencies and inter-sensor correlations. We firstly propose an improved unsupervised anomaly detection framework which extracts the temporal and spatial patterns based on the autoencoder and the attention-based convolutional long-short term memory networks. In particular, the original data are fused into the input signature matrices to avoid information loss and an improved sample-based threshold setting approach is proposed to estimate the optimal threshold automatically. Finally, the experiments on two sensor datasets illustrate that our model achieves superior performance over state-of-the-art methods.
基于重构的信息物理系统多尺度异常检测
针对不同传感器采集的多元时间序列数据具有复杂的时间依赖性和传感器间相关性的网络物理系统异常检测问题。首先提出了一种改进的无监督异常检测框架,该框架基于自编码器和基于注意的卷积长短期记忆网络提取时间和空间模式。特别地,将原始数据融合到输入签名矩阵中以避免信息丢失,并提出了一种改进的基于样本的阈值设置方法来自动估计最优阈值。最后,在两个传感器数据集上的实验表明,我们的模型比最先进的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信