Adaptive dynamic programming for terminally constrained finite-horizon optimal control problems

Lindsey Andrews, Justin R. Klotz, R. Kamalapurkar, W. Dixon
{"title":"Adaptive dynamic programming for terminally constrained finite-horizon optimal control problems","authors":"Lindsey Andrews, Justin R. Klotz, R. Kamalapurkar, W. Dixon","doi":"10.1109/CDC.2014.7040185","DOIUrl":null,"url":null,"abstract":"Adaptive dynamic programming is applied to control-affine nonlinear systems with uncertain drift dynamics to obtain a near-optimal solution to a finite-horizon optimal control problem with hard terminal constraints. A reinforcement learning-based actor-critic framework is used to approximately solve the Hamilton-Jacobi-Bellman equation, wherein critic and actor neural networks (NN) are used for approximate learning of the optimal value function and control policy, while enforcing the optimality condition resulting from the hard terminal constraint. Concurrent learning-based update laws relax the restrictive persistence of excitation requirement. A Lyapunov-based stability analysis guarantees uniformly ultimately bounded convergence of the enacted control policy to the optimal control policy.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adaptive dynamic programming is applied to control-affine nonlinear systems with uncertain drift dynamics to obtain a near-optimal solution to a finite-horizon optimal control problem with hard terminal constraints. A reinforcement learning-based actor-critic framework is used to approximately solve the Hamilton-Jacobi-Bellman equation, wherein critic and actor neural networks (NN) are used for approximate learning of the optimal value function and control policy, while enforcing the optimality condition resulting from the hard terminal constraint. Concurrent learning-based update laws relax the restrictive persistence of excitation requirement. A Lyapunov-based stability analysis guarantees uniformly ultimately bounded convergence of the enacted control policy to the optimal control policy.
终端约束有限视界最优控制问题的自适应动态规划
将自适应动态规划应用于具有不确定漂移动力学的控制仿射非线性系统,得到了一类具有硬终端约束的有限视界最优控制问题的近最优解。采用基于强化学习的行为者-批评者框架近似求解Hamilton-Jacobi-Bellman方程,其中批评者和行为者神经网络(NN)用于最优值函数和控制策略的近似学习,同时执行由硬终端约束产生的最优性条件。基于并行学习的更新律放宽了对激励持续性的限制。基于lyapunov的稳定性分析保证了所制定的控制策略最终一致有界收敛于最优控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信