Synchronizing Almost-Group Automata

M. Berlinkov, C. Nicaud
{"title":"Synchronizing Almost-Group Automata","authors":"M. Berlinkov, C. Nicaud","doi":"10.1142/s0129054120420058","DOIUrl":null,"url":null,"abstract":"In this paper we address the question of synchronizing random automata in the critical settings of almost-group automata. Group automata are automata where all letters act as permutations on the set of states, and they are not synchronizing (unless they have one state). In almost-group automata, one of the letters acts as a permutation on [Formula: see text] states, and the others as permutations. We prove that this small change is enough for automata to become synchronizing with high probability. More precisely, we establish that the probability that a strongly-connected almost-group automaton is not synchronizing is [Formula: see text], for a [Formula: see text]-letter alphabet. We also present an efficient algorithm that decides whether a strongly-connected almost-group automaton is synchronizing. For a natural model of computation, we establish a [Formula: see text] worst-case lower bound for this problem ([Formula: see text] for the average case), which is almost matched by our algorithm.","PeriodicalId":192109,"journal":{"name":"Int. J. Found. Comput. Sci.","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Found. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054120420058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we address the question of synchronizing random automata in the critical settings of almost-group automata. Group automata are automata where all letters act as permutations on the set of states, and they are not synchronizing (unless they have one state). In almost-group automata, one of the letters acts as a permutation on [Formula: see text] states, and the others as permutations. We prove that this small change is enough for automata to become synchronizing with high probability. More precisely, we establish that the probability that a strongly-connected almost-group automaton is not synchronizing is [Formula: see text], for a [Formula: see text]-letter alphabet. We also present an efficient algorithm that decides whether a strongly-connected almost-group automaton is synchronizing. For a natural model of computation, we establish a [Formula: see text] worst-case lower bound for this problem ([Formula: see text] for the average case), which is almost matched by our algorithm.
同步几乎组自动机
本文研究了随机自动机在近群自动机临界设置下的同步问题。组自动机是一种自动机,其中所有字母都充当状态集上的排列,并且它们不同步(除非它们有一个状态)。在近群自动机中,其中一个字母作为[公式:见文本]状态的排列,其他字母作为排列。我们证明了这个小的变化足以使自动机以高概率同步。更准确地说,我们确定一个强连接的近群自动机不同步的概率是[公式:见文],对于一个[公式:见文]字母字母表。我们还提出了一种判定强连接近群自动机是否同步的有效算法。对于一个自然的计算模型,我们为这个问题建立了一个[公式:见文]最坏情况下界([公式:见文]为平均情况),这与我们的算法几乎匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信