LSTM Hyperparameters optimization with Hparam parameters for Bitcoin Price Prediction

I. Kervanci, Fatih Akay
{"title":"LSTM Hyperparameters optimization with Hparam parameters for Bitcoin Price Prediction","authors":"I. Kervanci, Fatih Akay","doi":"10.35377/saucis...1172027","DOIUrl":null,"url":null,"abstract":"Machine learning and deep learning algorithms produce very different results with different examples of their hyperparameters. Algorithm parameters require optimization because they aren't specific for all problems. In this paper Long Short-Term Memory (LSTM), eight different hyperparameters (go-backward, epoch, batch size, dropout, activation function, optimizer, learning rate and, number of layers) were used to examine to daily and hourly Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained These parameters were examined with hparam properties of Tensorboard. As a result, it was seen that examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values with hourly dataset 0.000043633 and daily dataset 0.00073843. Both datasets produced better results with the tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset produces better results with a large learning rate and large dropout values.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"432 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1172027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning and deep learning algorithms produce very different results with different examples of their hyperparameters. Algorithm parameters require optimization because they aren't specific for all problems. In this paper Long Short-Term Memory (LSTM), eight different hyperparameters (go-backward, epoch, batch size, dropout, activation function, optimizer, learning rate and, number of layers) were used to examine to daily and hourly Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained These parameters were examined with hparam properties of Tensorboard. As a result, it was seen that examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values with hourly dataset 0.000043633 and daily dataset 0.00073843. Both datasets produced better results with the tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset produces better results with a large learning rate and large dropout values.
比特币价格预测的Hparam参数LSTM超参数优化
机器学习和深度学习算法在不同的超参数示例中产生非常不同的结果。算法参数需要优化,因为它们并不适用于所有问题。在本文长短期记忆(LSTM)中,使用八个不同的超参数(回溯,epoch,批大小,dropout,激活函数,优化器,学习率和层数)来检查每日和每小时的比特币数据集。对每日数据集上的每个参数对结果的影响进行了评估和解释。这些参数使用Tensorboard的hparam属性进行了检查。因此,可以看到,使用hparam检查参数的所有组合产生了最佳的测试均方误差(MSE)值,每小时数据集为0.000043633,每日数据集为0.00073843。使用tanh激活函数,两个数据集都产生了更好的结果。最后,在对结果进行解释时,每天的数据集在较小的学习率和较小的dropout值下产生较好的结果,而每小时的数据集在较大的学习率和较大的dropout值下产生较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信