Labeling of curvilinear structure across scales by token grouping

E. Saund
{"title":"Labeling of curvilinear structure across scales by token grouping","authors":"E. Saund","doi":"10.1109/CVPR.1992.223266","DOIUrl":null,"url":null,"abstract":"An algorithm for labeling curvilinear structure at multiple scales in line drawings and edge images is presented. Symbolic curve-element tokens residing in a spatially indexed and scale-indexed data structure denote circular arcs fit to image data. Tokens are computed via a small-to-large scale grouping procedure using a greedy best-first strategy for choosing the support of new tokens. The resulting image description is rich and redundant in that a given segment of image contour may be described by multiple tokens at different scales, and by more than one token at any given scale. This property facilitates selection and characterization of portions of the image based on curve-element attributes.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

An algorithm for labeling curvilinear structure at multiple scales in line drawings and edge images is presented. Symbolic curve-element tokens residing in a spatially indexed and scale-indexed data structure denote circular arcs fit to image data. Tokens are computed via a small-to-large scale grouping procedure using a greedy best-first strategy for choosing the support of new tokens. The resulting image description is rich and redundant in that a given segment of image contour may be described by multiple tokens at different scales, and by more than one token at any given scale. This property facilitates selection and characterization of portions of the image based on curve-element attributes.<>
基于标记分组的曲线结构跨尺度标注
提出了一种线条图和边缘图像中多尺度曲线结构的标注算法。驻留在空间索引和比例索引数据结构中的符号曲线元素标记表示适合图像数据的圆弧。令牌是通过一个从小到大的分组过程来计算的,使用贪婪的最佳优先策略来选择对新令牌的支持。所得到的图像描述是丰富和冗余的,因为图像轮廓的给定片段可以由不同尺度的多个标记来描述,并且在任何给定尺度上可以由多个标记来描述。此属性有助于基于曲线元素属性的图像部分的选择和表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信