{"title":"Toward a Functional Failure Analysis Method of Identifying and Mitigating Spurious System Emissions in a System of Systems","authors":"Douglas L. Van Bossuyt, R. Arlitt","doi":"10.1115/detc2019-98255","DOIUrl":null,"url":null,"abstract":"\n Increasingly tight coupling and heavy connectedness in systems of systems (SoS) presents new problems for systems designers and engineers. While the failure of one system within a SoS may produce little collateral damage beyond a loss in SoS capability, a highly interconnected SoS can experience significant damage when one member system fails in an unanticipated way. It is therefore important to develop systems that are “good neighbors” with the other systems in a SoS by failing in ways that do not further degrade a SoS’s ability to complete its mission.\n This paper presents a method to (1) analyze a system for potential spurious emissions and (2) choose mitigation strategies that provide the best return on investment for the SoS. The method is suited for use during the system architecture phase of the system design process. A functional and flow approach to analyzing spurious emissions and developing mitigation strategies is used in the method. Use of the method may result in a system that causes less SoS damage during a failure event.","PeriodicalId":352702,"journal":{"name":"Volume 1: 39th Computers and Information in Engineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 39th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Increasingly tight coupling and heavy connectedness in systems of systems (SoS) presents new problems for systems designers and engineers. While the failure of one system within a SoS may produce little collateral damage beyond a loss in SoS capability, a highly interconnected SoS can experience significant damage when one member system fails in an unanticipated way. It is therefore important to develop systems that are “good neighbors” with the other systems in a SoS by failing in ways that do not further degrade a SoS’s ability to complete its mission.
This paper presents a method to (1) analyze a system for potential spurious emissions and (2) choose mitigation strategies that provide the best return on investment for the SoS. The method is suited for use during the system architecture phase of the system design process. A functional and flow approach to analyzing spurious emissions and developing mitigation strategies is used in the method. Use of the method may result in a system that causes less SoS damage during a failure event.