Parallel sparse interpolation using small primes

Mohamed Khochtali, Daniel S. Roche, Xisen Tian
{"title":"Parallel sparse interpolation using small primes","authors":"Mohamed Khochtali, Daniel S. Roche, Xisen Tian","doi":"10.1145/2790282.2790290","DOIUrl":null,"url":null,"abstract":"To interpolate a supersparse polynomial with integer coefficients, two alternative approaches are the Prony-based \"big prime\" technique, which acts over a single large finite field, or the more recently-proposed \"small primes\" technique, which reduces the unknown sparse polynomial to many low-degree dense polynomials. While the latter technique has not yet reached the same theoretical efficiency as Prony-based methods, it has an obvious potential for parallelization. We present a heuristic \"small primes\" interpolation algorithm and report on a low-level C implementation using FLINT and MPI.","PeriodicalId":384227,"journal":{"name":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790282.2790290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To interpolate a supersparse polynomial with integer coefficients, two alternative approaches are the Prony-based "big prime" technique, which acts over a single large finite field, or the more recently-proposed "small primes" technique, which reduces the unknown sparse polynomial to many low-degree dense polynomials. While the latter technique has not yet reached the same theoretical efficiency as Prony-based methods, it has an obvious potential for parallelization. We present a heuristic "small primes" interpolation algorithm and report on a low-level C implementation using FLINT and MPI.
使用小素数的并行稀疏插值
要插值具有整数系数的超稀疏多项式,有两种替代方法是基于prony的“大素数”技术,它作用于单个大有限域,或者最近提出的“小素数”技术,它将未知的稀疏多项式减少为许多低次密集多项式。虽然后一种技术尚未达到与基于prony的方法相同的理论效率,但它具有明显的并行化潜力。我们提出了一种启发式“小素数”插值算法,并报告了使用FLINT和MPI的低级C实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信