A Pyramidal Evolutionary Algorithm with Different Inter-Agent Partnering Strategies for Scheduling Problems

U. Aickelin
{"title":"A Pyramidal Evolutionary Algorithm with Different Inter-Agent Partnering Strategies for Scheduling Problems","authors":"U. Aickelin","doi":"10.2139/ssrn.2832055","DOIUrl":null,"url":null,"abstract":"This paper combines the idea of a hierarchical distributed genetic algorithm with different interagent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level subpopulations search a larger search space with a lower resolution whilst lower-level subpopulations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiplechoice optimisation problems. It is shown that partnering strategies that exploit problemspecific knowledge are superior and can counter inappropriate (sub-) fitness measurements.","PeriodicalId":374055,"journal":{"name":"Scheduling eJournal","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scheduling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2832055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper combines the idea of a hierarchical distributed genetic algorithm with different interagent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level subpopulations search a larger search space with a lower resolution whilst lower-level subpopulations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiplechoice optimisation problems. It is shown that partnering strategies that exploit problemspecific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
调度问题中不同agent间伙伴策略的金字塔进化算法
本文将分层分布式遗传算法的思想与不同的智能体间合作策略相结合。子种群的级联集群由下而上构建,更高级别的子种群优化了问题的更大部分。因此,高级子种群以较低的分辨率搜索较大的搜索空间,而低级子种群以较高的分辨率搜索较小的搜索空间。针对两个多选择优化问题,研究了不同的合作伙伴选择方案对求解质量的影响。研究表明,利用问题特定知识的合作策略具有较强的优势,可以对抗不适当的(次)适应度度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信