Investigating the role of machine translated text in ASR domain adaptation: Unsupervised and semi-supervised methods

H. Cucu, L. Besacier, C. Burileanu, Andi Buzo
{"title":"Investigating the role of machine translated text in ASR domain adaptation: Unsupervised and semi-supervised methods","authors":"H. Cucu, L. Besacier, C. Burileanu, Andi Buzo","doi":"10.1109/ASRU.2011.6163941","DOIUrl":null,"url":null,"abstract":"This study investigates the use of machine translated text for ASR domain adaptation. The proposed methodology is applicable when domain-specific data is available in language X only, whereas the goal is to develop a domain-specific system in language Y. Two semi-supervised methods are introduced and compared with a fully unsupervised approach, which represents the baseline. While both unsupervised and semi-supervised approaches allow to quickly develop an accurate domain-specific ASR system, the semi-supervised approaches overpass the unsupervised one by 10% to 29% relative, depending on the amount of human post-processed data available. An in-depth analysis, to explain how the machine translated text improves the performance of the domain-specific ASR, is also given at the end of this paper.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This study investigates the use of machine translated text for ASR domain adaptation. The proposed methodology is applicable when domain-specific data is available in language X only, whereas the goal is to develop a domain-specific system in language Y. Two semi-supervised methods are introduced and compared with a fully unsupervised approach, which represents the baseline. While both unsupervised and semi-supervised approaches allow to quickly develop an accurate domain-specific ASR system, the semi-supervised approaches overpass the unsupervised one by 10% to 29% relative, depending on the amount of human post-processed data available. An in-depth analysis, to explain how the machine translated text improves the performance of the domain-specific ASR, is also given at the end of this paper.
研究机器翻译文本在ASR领域适应中的作用:无监督和半监督方法
本研究探讨了机器翻译文本在ASR领域自适应中的应用。所提出的方法适用于仅以X语言提供特定领域数据的情况,而目标是用y语言开发特定领域系统。本文介绍了两种半监督方法,并将其与代表基线的完全无监督方法进行了比较。尽管无监督方法和半监督方法都可以快速开发出精确的特定领域ASR系统,但半监督方法相对于无监督方法高出10%至29%,具体取决于可用的人工后处理数据量。本文最后还深入分析了机器翻译文本如何提高特定领域ASR的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信