{"title":"Appendix B Anisotropic Elasticity","authors":"","doi":"10.1002/9781119513889.app2","DOIUrl":null,"url":null,"abstract":"In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)","PeriodicalId":407728,"journal":{"name":"Design and Analysis of Composite Structures for Automotive Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design and Analysis of Composite Structures for Automotive Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119513889.app2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
附录B各向异性弹性
在线弹性理论中,只考虑形状的微小变化,并假设宏观均匀的线弹性材料。弹性变形在释放后完全消失。正交的机构广义胡克定律适用于9个有效弹性常数:εxx = 1 E1σxx−21 E2υσyy−32 E3υσzz,εyy = 1 E2σyy−12 E1υσxx−32 E3υσzz,εzz = 1 E3σzz−13 E1υσxx−23 E2υσyy,γyz =γzy = 1 G23τyz = 1 G32τzyγzx =γxz = 1 G31τzx = 1 G13τxz,γxy =γy = 1 G12τxy = 1 G21τyx。(责任)
本文章由计算机程序翻译,如有差异,请以英文原文为准。