A New Similarity Measure Between HMMS

Yih-Ru Wang
{"title":"A New Similarity Measure Between HMMS","authors":"Yih-Ru Wang","doi":"10.1109/CHINSL.2008.ECP.67","DOIUrl":null,"url":null,"abstract":"In this paper, a new similarity measure between HMM models which extended the well-known Kullback-Leibler distance was proposed. The Kullback-Leibler distance was defined as the mean of log-likelihood ratio (LLR) in a hypotheses test and the Kullback-Leibler distance was frequently used as a similarity measure for HMM models. Here, the standard deviation of LLR between HMM models was deviated first. Besides, the ratio of mean and standard variation of LLR was used as a new similarity measure between HMM models. Experiments were done in a Mandarin speech database, TCC-300, in order to check the effectiveness of the proposed similarity measure. The accuracy of the standard deviation of LLR estimated from the syllable HMM models was checked by comparison with the standard deviation of LLR of top-10 candidates found from HMM decoder. And, the confusion sets of 411 syllables were also found by using both the KL distance and the proposed similarity measure. Comparing to the top-10 confusion models, 94.9% and 95.3% inclusion rates can be achieved by using KL distance and the proposed similarity measure of HMM models.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new similarity measure between HMM models which extended the well-known Kullback-Leibler distance was proposed. The Kullback-Leibler distance was defined as the mean of log-likelihood ratio (LLR) in a hypotheses test and the Kullback-Leibler distance was frequently used as a similarity measure for HMM models. Here, the standard deviation of LLR between HMM models was deviated first. Besides, the ratio of mean and standard variation of LLR was used as a new similarity measure between HMM models. Experiments were done in a Mandarin speech database, TCC-300, in order to check the effectiveness of the proposed similarity measure. The accuracy of the standard deviation of LLR estimated from the syllable HMM models was checked by comparison with the standard deviation of LLR of top-10 candidates found from HMM decoder. And, the confusion sets of 411 syllables were also found by using both the KL distance and the proposed similarity measure. Comparing to the top-10 confusion models, 94.9% and 95.3% inclusion rates can be achieved by using KL distance and the proposed similarity measure of HMM models.
一种新的hmm间相似性度量方法
本文提出了一种新的HMM模型间相似度度量方法,扩展了众所周知的Kullback-Leibler距离。在假设检验中,Kullback-Leibler距离被定义为对数似然比(LLR)的平均值,Kullback-Leibler距离经常被用作HMM模型的相似性度量。在这里,首先对HMM模型之间的LLR标准差进行偏差处理。此外,采用最小最小方差的均值与标准差之比作为HMM模型之间新的相似性度量。在普通话语音数据库TCC-300中进行了实验,以验证所提出的相似度度量的有效性。通过与HMM解码器中发现的前10个候选词的LLR标准差进行比较,检验音节HMM模型估计的LLR标准差的准确性。同时,利用KL距离和所提出的相似度度量方法也找到了411个音节的混淆集。与前10个混淆模型相比,使用KL距离和提出的HMM模型相似度度量可以获得94.9%和95.3%的包含率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信