{"title":"Effect of the Pressure Drop Oscillation on the Local Heat Transfer Coefficient in a Heated Horizontal Pipe","authors":"I. Park, M. Fernandino, C. Dorao","doi":"10.1115/ICNMM2018-7652","DOIUrl":null,"url":null,"abstract":"Two-phase flow instabilities have been studied during the past decades. Pressure drop oscillation (PDO) shows a relatively larger amplitude oscillation compared with other instabilities. This oscillation typically occurs when the system has compressible volume and operates in a negative slope region of the pressure drop versus flow rate curve. The characteristics of the PDO has been studied experimentally and theoretically. Even though research has been performed for identifying the characteristics of the PDO, how the PDO affects the heat transfer coefficient (HTC) remain unclear. In this study, the heat transfer coefficient is experimentally studied during pressure drop oscillation. The experiment is conducted with a heated horizontal tube with 5 mm inner diameter and 2.0 meters in length, and the R-134a is used a working fluid. For the cases studied, no significant effect of the PDO on the average heat transfer coefficient was observed.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Two-phase flow instabilities have been studied during the past decades. Pressure drop oscillation (PDO) shows a relatively larger amplitude oscillation compared with other instabilities. This oscillation typically occurs when the system has compressible volume and operates in a negative slope region of the pressure drop versus flow rate curve. The characteristics of the PDO has been studied experimentally and theoretically. Even though research has been performed for identifying the characteristics of the PDO, how the PDO affects the heat transfer coefficient (HTC) remain unclear. In this study, the heat transfer coefficient is experimentally studied during pressure drop oscillation. The experiment is conducted with a heated horizontal tube with 5 mm inner diameter and 2.0 meters in length, and the R-134a is used a working fluid. For the cases studied, no significant effect of the PDO on the average heat transfer coefficient was observed.