Seismic Waveform Inversion with Source Manipulation

R. Wang, C. Bao, L. Qiu
{"title":"Seismic Waveform Inversion with Source Manipulation","authors":"R. Wang, C. Bao, L. Qiu","doi":"10.3997/2214-4609.202113161","DOIUrl":null,"url":null,"abstract":"Summary In recent decades, Full-waveform inversion (FWI) has suffered from the cycle-skipping issue, which we found can be mitigated by changing the source signature of the observed data. Compared with a physical source such as the Ricker source, seismic data with the Gaussian source can provide a better landscape of the objective function while improving the gradient's quality in the iterative reconstruction. In the synthetic experiments, we transform band-limited seismic data simulated with the Ricker wavelet into seismic data with the Gaussian source and apply it to FWI. Neural networks are employed to provide an efficient solution to this problem. Numerical experiments on the Marmousi model are conducted to demonstrate the effectiveness of our proposed method.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary In recent decades, Full-waveform inversion (FWI) has suffered from the cycle-skipping issue, which we found can be mitigated by changing the source signature of the observed data. Compared with a physical source such as the Ricker source, seismic data with the Gaussian source can provide a better landscape of the objective function while improving the gradient's quality in the iterative reconstruction. In the synthetic experiments, we transform band-limited seismic data simulated with the Ricker wavelet into seismic data with the Gaussian source and apply it to FWI. Neural networks are employed to provide an efficient solution to this problem. Numerical experiments on the Marmousi model are conducted to demonstrate the effectiveness of our proposed method.
地震波形反演与震源处理
近几十年来,全波形反演(FWI)一直受到周期跳变问题的困扰,我们发现可以通过改变观测数据的源特征来缓解这一问题。与物理震源(如Ricker震源)相比,高斯震源的地震数据在迭代重建中可以提供更好的目标函数景观,同时提高梯度的质量。在综合实验中,我们将Ricker小波模拟的带限地震数据转换为高斯源地震数据,并将其应用于FWI。神经网络是解决这一问题的有效方法。通过对Marmousi模型的数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信