iHELP: Personalised Health Monitoring and Decision Support Based on Artificial Intelligence and Holistic Health Records

George Manias, H. O. D. Akker, Ainhoa Azqueta-Alzúaz, Diego Burgos-Sancho, N. D. Capocchiano, Borja Llobell Crespo, Athanasios Dalianis, A. Damiani, Krasimir Filipov, Giorgos Giotis, M. Kalogerini, R. Kostadinov, Pavlos Kranas, D. Kyriazis, A. Lophatananon, Shwetambara Malwade, G. Marinos, Fabio Melillo, Vicent Moncho Mas, K. Muir, M. Nieroda, A. Nigro, C. Pandolfo, M. Patiño-Martínez, Florin Picioroaga, Aristodemos Pnevmatikakis, S. Syed-Abdul, T. Tomson, D. Vicheva, U. Wajid
{"title":"iHELP: Personalised Health Monitoring and Decision Support Based on Artificial Intelligence and Holistic Health Records","authors":"George Manias, H. O. D. Akker, Ainhoa Azqueta-Alzúaz, Diego Burgos-Sancho, N. D. Capocchiano, Borja Llobell Crespo, Athanasios Dalianis, A. Damiani, Krasimir Filipov, Giorgos Giotis, M. Kalogerini, R. Kostadinov, Pavlos Kranas, D. Kyriazis, A. Lophatananon, Shwetambara Malwade, G. Marinos, Fabio Melillo, Vicent Moncho Mas, K. Muir, M. Nieroda, A. Nigro, C. Pandolfo, M. Patiño-Martínez, Florin Picioroaga, Aristodemos Pnevmatikakis, S. Syed-Abdul, T. Tomson, D. Vicheva, U. Wajid","doi":"10.1109/ISCC53001.2021.9631475","DOIUrl":null,"url":null,"abstract":"Scientific and clinical research have advanced the ability of healthcare professionals to more precisely define diseases and classify patients into different groups based on their likelihood of responding to a given treatment, and on their future risks. However, a significant gap remains between the delivery of stratified healthcare and personalization. The latter implies solutions that seek to treat each citizen as a truly unique individual, as opposed to a member of a group with whom they share common risks or health-related characteristics. Personalisation also implies an approach that takes into account personal characteristics and conditions of individuals. This paper investigates how these desirable attributes can be developed and introduces a holistic environment, the iHELP, that incorporates big data management and Artificial Intelligence (AI) approaches to enable the realization of data-driven pathways where awareness, care and decision support is provided based on person-centric early risk prediction, prevention and intervention measures.","PeriodicalId":270786,"journal":{"name":"2021 IEEE Symposium on Computers and Communications (ISCC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC53001.2021.9631475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Scientific and clinical research have advanced the ability of healthcare professionals to more precisely define diseases and classify patients into different groups based on their likelihood of responding to a given treatment, and on their future risks. However, a significant gap remains between the delivery of stratified healthcare and personalization. The latter implies solutions that seek to treat each citizen as a truly unique individual, as opposed to a member of a group with whom they share common risks or health-related characteristics. Personalisation also implies an approach that takes into account personal characteristics and conditions of individuals. This paper investigates how these desirable attributes can be developed and introduces a holistic environment, the iHELP, that incorporates big data management and Artificial Intelligence (AI) approaches to enable the realization of data-driven pathways where awareness, care and decision support is provided based on person-centric early risk prediction, prevention and intervention measures.
iHELP:基于人工智能和整体健康记录的个性化健康监测和决策支持
科学和临床研究提高了医疗保健专业人员的能力,使他们能够更精确地定义疾病,并根据患者对特定治疗的反应可能性及其未来风险将患者分为不同的组。然而,在提供分层医疗保健和个性化之间仍然存在巨大差距。后者意味着寻求将每个公民视为真正独特的个体的解决办法,而不是与他们共享共同风险或健康相关特征的群体成员。个性化还意味着一种考虑到个人特征和条件的方法。本文研究了如何开发这些理想的属性,并引入了一个整体环境iHELP,该环境结合了大数据管理和人工智能(AI)方法,以实现数据驱动的路径,在该路径中,基于以人为中心的早期风险预测、预防和干预措施提供意识、护理和决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信