Towards a Virtual Coach for manual wheelchair users

Brian French, Divya Tyamagundlu, D. Siewiorek, A. Smailagic, D. Ding
{"title":"Towards a Virtual Coach for manual wheelchair users","authors":"Brian French, Divya Tyamagundlu, D. Siewiorek, A. Smailagic, D. Ding","doi":"10.1109/ISWC.2008.4911589","DOIUrl":null,"url":null,"abstract":"We introduce the concept of a Virtual Coach (VC) for providing advice to manual wheelchair users to help them avoid damaging forms of locomotion. The primary form of context for this system is the user's propulsion pattern. The contexts of self vs. external propulsion and the surface over which propulsion is occurring can be used to improve the accuracy of the system's propulsion pattern classifications. To obtain these forms of context, we explore the use of both wearable and wheelchair-mounted accelerometers. We show achievable accuracy rates of up to 80-90% for all desired contextual information using two common machine learning techniques: k-nearest neighbor (kNN) and support vector machines (SVM).","PeriodicalId":336550,"journal":{"name":"2008 12th IEEE International Symposium on Wearable Computers","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th IEEE International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2008.4911589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We introduce the concept of a Virtual Coach (VC) for providing advice to manual wheelchair users to help them avoid damaging forms of locomotion. The primary form of context for this system is the user's propulsion pattern. The contexts of self vs. external propulsion and the surface over which propulsion is occurring can be used to improve the accuracy of the system's propulsion pattern classifications. To obtain these forms of context, we explore the use of both wearable and wheelchair-mounted accelerometers. We show achievable accuracy rates of up to 80-90% for all desired contextual information using two common machine learning techniques: k-nearest neighbor (kNN) and support vector machines (SVM).
面向手动轮椅使用者的虚拟教练
我们引入了虚拟教练(VC)的概念,为手动轮椅使用者提供建议,帮助他们避免有害的运动形式。这个系统的主要背景形式是用户的推进模式。自推进与外部推进的背景以及推进发生的表面可以用来提高系统推进模式分类的准确性。为了获得这些形式的背景,我们探索了可穿戴和轮椅上安装的加速度计的使用。我们使用两种常见的机器学习技术:k-最近邻(kNN)和支持向量机(SVM),展示了所有所需上下文信息的可实现准确率高达80-90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信