Bootstrap Residual Ensemble Methods for Estimation of Standard Error of Parameter Logistic Regression To Hypercolesterolemia Patient Data In Health Laboratory Yogyakarta

S. W. F. Grace, S. Handajani, T. S. Martini
{"title":"Bootstrap Residual Ensemble Methods for Estimation of Standard Error of Parameter Logistic Regression To Hypercolesterolemia Patient Data In Health Laboratory Yogyakarta","authors":"S. W. F. Grace, S. Handajani, T. S. Martini","doi":"10.13057/ijas.v1i1.24086","DOIUrl":null,"url":null,"abstract":"Logistic regression is one of regression analysis to determine the relationship between response variable that have two possible values and some predictor variables. The method used to estimate logistic regression parameters is the maximum likelihood estimation (MLE) method. This method will produce a good estimate of the parameters if the estimation results have a small standard error.In a research, the characteristics of good data must be representative of the population. If the samples taken in small size they will cause a large standard error value. Bootstrap is a resampling method that can be used to obtain a good estimate based on small data samples. Small data will be resampling so it can represent the population to obtain minimum standard error. Previous studies have discussed resampling bootstrap on residuals as much as b times. In this research we will be analyzed resampling bootstrap on the error added to the dependent variable and take the average parameter estimation ensemble logistic regression model resampling result. Next we calculate the standard value error logistic regression parameters bootstrap results.This method is applied to the hypercholesterolemic patient status data in Health Laboratory Yogyakarta and after bootstrapping, the standard error produced is smaller than before the bootstrap resampling.Keywords : logistic regression, standard error, bootstrap resampling, parameter estimation ensemble","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/ijas.v1i1.24086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Logistic regression is one of regression analysis to determine the relationship between response variable that have two possible values and some predictor variables. The method used to estimate logistic regression parameters is the maximum likelihood estimation (MLE) method. This method will produce a good estimate of the parameters if the estimation results have a small standard error.In a research, the characteristics of good data must be representative of the population. If the samples taken in small size they will cause a large standard error value. Bootstrap is a resampling method that can be used to obtain a good estimate based on small data samples. Small data will be resampling so it can represent the population to obtain minimum standard error. Previous studies have discussed resampling bootstrap on residuals as much as b times. In this research we will be analyzed resampling bootstrap on the error added to the dependent variable and take the average parameter estimation ensemble logistic regression model resampling result. Next we calculate the standard value error logistic regression parameters bootstrap results.This method is applied to the hypercholesterolemic patient status data in Health Laboratory Yogyakarta and after bootstrapping, the standard error produced is smaller than before the bootstrap resampling.Keywords : logistic regression, standard error, bootstrap resampling, parameter estimation ensemble
日惹卫生实验室高胆固醇血症患者资料参数逻辑回归标准误差估计的自举残差集成方法
逻辑回归是确定具有两个可能值的响应变量与某些预测变量之间关系的回归分析的一种。用于估计逻辑回归参数的方法是最大似然估计(MLE)方法。如果估计结果具有较小的标准误差,则该方法可以产生较好的参数估计。在一项研究中,好的数据的特征必须是具有代表性的。如果取样量小,则会产生较大的标准误差值。Bootstrap是一种重采样方法,可以在小数据样本的基础上获得较好的估计。小数据将被重新采样,以便它可以代表总体,以获得最小的标准误差。以前的研究讨论了残差重采样自举多达b次。在本研究中,我们将分析重采样对误差加到因变量上的自举,并采取平均参数估计集成逻辑回归模型的重采样结果。接下来我们计算标准差的逻辑回归参数自举结果。该方法应用于日惹卫生实验室的高胆固醇血症患者状态数据,自举后产生的标准误差小于自举重采样前。关键词:逻辑回归,标准误差,自举重抽样,参数估计集合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信