Using Neighborhood Distributions of Wavelet Coefficients for On-the-Fly, Multiscale-Based Image Retrieval

S. Anthoine, E. Debreuve, Paolo Piro, M. Barlaud
{"title":"Using Neighborhood Distributions of Wavelet Coefficients for On-the-Fly, Multiscale-Based Image Retrieval","authors":"S. Anthoine, E. Debreuve, Paolo Piro, M. Barlaud","doi":"10.1109/WIAMIS.2008.46","DOIUrl":null,"url":null,"abstract":"In this paper, we define a similarity measure to compare images in the context of (indexing and) retrieval. We use the Kullback-Leibler (KL) divergence to compare sparse multiscale image descriptions in a wavelet domain. The KL divergence between wavelet coefficient distributions has already been used as a similarity measure between images. The novelty here is twofold. Firstly, we consider the dependencies between the coefficients by means of distributions of mixed intra/interscale neighborhoods. Secondly, to cope with the high-dimensionality of the resulting description space, we estimate the KL divergences in the k-th nearest neighbor framework, instead of using classical fixed size kernel methods. Query-by-example experiments are presented.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we define a similarity measure to compare images in the context of (indexing and) retrieval. We use the Kullback-Leibler (KL) divergence to compare sparse multiscale image descriptions in a wavelet domain. The KL divergence between wavelet coefficient distributions has already been used as a similarity measure between images. The novelty here is twofold. Firstly, we consider the dependencies between the coefficients by means of distributions of mixed intra/interscale neighborhoods. Secondly, to cope with the high-dimensionality of the resulting description space, we estimate the KL divergences in the k-th nearest neighbor framework, instead of using classical fixed size kernel methods. Query-by-example experiments are presented.
基于小波系数邻域分布的动态多尺度图像检索
在本文中,我们定义了一个相似度度量来比较(索引和)检索背景下的图像。我们使用Kullback-Leibler (KL)散度来比较小波域的稀疏多尺度图像描述。小波系数分布之间的KL散度已被用作图像之间的相似性度量。这里的新奇是双重的。首先,通过尺度内/尺度间混合邻域的分布来考虑系数之间的依赖关系。其次,为了应对结果描述空间的高维性,我们在第k近邻框架中估计KL散度,而不是使用经典的固定大小核方法。给出了实例查询实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信