{"title":"An integer programming placement approach to FPGA clock power reduction","authors":"Alireza Rakhshanfar, J. Anderson","doi":"10.1109/ASPDAC.2011.5722305","DOIUrl":null,"url":null,"abstract":"Clock signals are responsible for a significant portion of dynamic power in FPGAs owing to their high toggle frequency and capacitance. Clock signals are distributed to loads through a programmable routing tree network, designed to provide low delay and low skew. The placement step of the FPGA CAD flow plays a key role in influencing clock power, as clock tree branches are connected based solely on the placement of the clock loads. In this paper, we present a placement-based approach to clock power reduction based on an integer linear programming (ILP) formulation. Our technique is intended to be used as an optimization post-pass executed after traditional placement, and it offers fine-grained control of the amount by which clock power is optimized versus other placement criteria. Results show that the proposed technique reduces clock network capacitance by over 50% with minimal deleterious impact on post-routed wirelength and circuit speed.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Clock signals are responsible for a significant portion of dynamic power in FPGAs owing to their high toggle frequency and capacitance. Clock signals are distributed to loads through a programmable routing tree network, designed to provide low delay and low skew. The placement step of the FPGA CAD flow plays a key role in influencing clock power, as clock tree branches are connected based solely on the placement of the clock loads. In this paper, we present a placement-based approach to clock power reduction based on an integer linear programming (ILP) formulation. Our technique is intended to be used as an optimization post-pass executed after traditional placement, and it offers fine-grained control of the amount by which clock power is optimized versus other placement criteria. Results show that the proposed technique reduces clock network capacitance by over 50% with minimal deleterious impact on post-routed wirelength and circuit speed.