Non parametric tool for vision detection analysis

Riad Azzam, N. Aouf
{"title":"Non parametric tool for vision detection analysis","authors":"Riad Azzam, N. Aouf","doi":"10.1109/ELMAR.2014.6923305","DOIUrl":null,"url":null,"abstract":"In this work, we deal with the problem of moving object detection using a non-parametric tool represented by the Gaussian process for classification. The technique used relies on the background subtraction approach for motion detection. In this context, a segmentation step is first implemented for pixel clustering before a binary Gaussian process classifier is applied to determine which pixel cluster those of news images belong to. The unclassified pixels are, therefore, labelled as detected targets. This proposed approach enables motion detection to be completed in a comparatively a short execution time with acceptable results. The results outlined here show the effectiveness of the approach to known background subtraction methods.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we deal with the problem of moving object detection using a non-parametric tool represented by the Gaussian process for classification. The technique used relies on the background subtraction approach for motion detection. In this context, a segmentation step is first implemented for pixel clustering before a binary Gaussian process classifier is applied to determine which pixel cluster those of news images belong to. The unclassified pixels are, therefore, labelled as detected targets. This proposed approach enables motion detection to be completed in a comparatively a short execution time with acceptable results. The results outlined here show the effectiveness of the approach to known background subtraction methods.
用于视觉检测分析的非参数工具
在这项工作中,我们使用高斯过程表示的非参数工具来处理运动目标检测问题。所使用的技术依赖于运动检测的背景减法方法。在此背景下,首先实现像素聚类的分割步骤,然后应用二值高斯过程分类器确定新闻图像属于哪个像素聚类。因此,未分类的像素被标记为检测到的目标。该方法能够在相对较短的执行时间内完成运动检测,并获得可接受的结果。这里概述的结果表明,该方法的有效性已知的背景减法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信