Towards An Explanatory Model for Network Traffic

Jorge Gonzalez, Joshua Clymer, Chad A. Bollmann
{"title":"Towards An Explanatory Model for Network Traffic","authors":"Jorge Gonzalez, Joshua Clymer, Chad A. Bollmann","doi":"10.1109/Sarnoff47838.2019.9067816","DOIUrl":null,"url":null,"abstract":"This work presents two explanatory mathematical models explaining how network traffic features that display Gaus-sian tendencies in single devices and small networks aggregate to alpha-stable processes in larger networks. The first model shows how self-similarity originates from an impulsive-noise-based representation of individual processes. A second model uses renewal processes to justify impulsive process aggregation to alpha-stable or Gaussian end states and permits estimating network traffic alpha-stable rates of convergence. We develop a model based on this first method to empirically validate this aggregation approach.","PeriodicalId":306134,"journal":{"name":"2019 IEEE 40th Sarnoff Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 40th Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Sarnoff47838.2019.9067816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents two explanatory mathematical models explaining how network traffic features that display Gaus-sian tendencies in single devices and small networks aggregate to alpha-stable processes in larger networks. The first model shows how self-similarity originates from an impulsive-noise-based representation of individual processes. A second model uses renewal processes to justify impulsive process aggregation to alpha-stable or Gaussian end states and permits estimating network traffic alpha-stable rates of convergence. We develop a model based on this first method to empirically validate this aggregation approach.
网络流量的解释模型
这项工作提出了两个解释性数学模型,解释了在单个设备和小型网络中显示高斯趋势的网络流量特征如何在大型网络中聚合为α稳定过程。第一个模型显示了自相似性是如何从单个过程的基于脉冲噪声的表示中产生的。第二个模型使用更新过程来证明脉冲过程聚合到α稳定或高斯端点状态,并允许估计网络流量的α稳定收敛速率。我们基于第一种方法开发了一个模型,以经验验证这种聚合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信