Estimation of Longitudinal Aerodynamic Derivatives Using Genetic Algorithm Optimized Method

A. Srivastava, Ajit Kumar, A. Ghosh
{"title":"Estimation of Longitudinal Aerodynamic Derivatives Using Genetic Algorithm Optimized Method","authors":"A. Srivastava, Ajit Kumar, A. Ghosh","doi":"10.11648/J.AJETM.20190402.11","DOIUrl":null,"url":null,"abstract":"This paper presents the estimation of longitudinal aerodynamic parameters by using Genetic Algorithm (GA) optimized method from simulated and real flight data of ATTAS aircraft. The simulated flight data is deliberately contaminated with 5%, 10%, and 15% of random noise for creating flight data, which bears similarity to real flight data. The proposed methodology utilizes the general notion of output error method, i.e., minimizing the response error between the measured response and estimated response, and the genetic algorithm as the optimization technique for an iterative update of the parameter vector. The longitudinal parameters are estimated by using the proposed method from both simulated data (without and with random noise) and real flight data. The parameter estimates obtained by using the proposed method is compared with the estimates from the Maximum-Likelihood method and data-driven methods viz. Delta method and GPR –Delta method for assessing the efficacy of the methodology. The statistical analysis of the parameter estimates has further cemented the confidence in the estimates obtained by using the proposed method.","PeriodicalId":287757,"journal":{"name":"American Journal of Engineering and Technology Management","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Technology Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJETM.20190402.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the estimation of longitudinal aerodynamic parameters by using Genetic Algorithm (GA) optimized method from simulated and real flight data of ATTAS aircraft. The simulated flight data is deliberately contaminated with 5%, 10%, and 15% of random noise for creating flight data, which bears similarity to real flight data. The proposed methodology utilizes the general notion of output error method, i.e., minimizing the response error between the measured response and estimated response, and the genetic algorithm as the optimization technique for an iterative update of the parameter vector. The longitudinal parameters are estimated by using the proposed method from both simulated data (without and with random noise) and real flight data. The parameter estimates obtained by using the proposed method is compared with the estimates from the Maximum-Likelihood method and data-driven methods viz. Delta method and GPR –Delta method for assessing the efficacy of the methodology. The statistical analysis of the parameter estimates has further cemented the confidence in the estimates obtained by using the proposed method.
基于遗传算法优化的纵向气动导数估计
针对atas飞机的模拟飞行数据和实际飞行数据,提出了采用遗传算法优化纵向气动参数估计的方法。模拟的飞行数据故意被5%、10%、15%的随机噪声污染,以产生与真实飞行数据相似的飞行数据。该方法采用输出误差法的一般概念,即最小化实测响应与估计响应之间的响应误差,并采用遗传算法作为参数向量迭代更新的优化技术。利用该方法对模拟数据(无随机噪声和有随机噪声)和实际飞行数据进行了纵向参数估计。将该方法得到的参数估计与最大似然法和数据驱动方法(即Delta法和GPR -Delta法)的估计进行了比较,以评估方法的有效性。参数估计值的统计分析进一步巩固了采用所提方法得到的估计值的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信