CIP-ES: Causal Input Perturbation for Explanation Surrogates

Sebastian Steindl, Martin Surner
{"title":"CIP-ES: Causal Input Perturbation for Explanation Surrogates","authors":"Sebastian Steindl, Martin Surner","doi":"10.1145/3590003.3590107","DOIUrl":null,"url":null,"abstract":"With current advances in Machine Learning and its growing use in high-impact scenarios, the demand for interpretable and explainable models becomes crucial. Causality research tries to go beyond statistical correlations by focusing on causal relationships, which is fundamental for Interpretable and Explainable Artificial Intelligence. In this paper, we perturb the input for explanation surrogates based on causal graphs. We present an approach to combine surrogate-based explanations with causal knowledge. We apply the perturbed data to the Local Interpretable Model-agnostic Explanations (LIME) approach to showcase how causal graphs improve explanations of surrogate models. We thus integrate features from both domains by adding a causal component to local explanations. The proposed approach enables explanations that suit the expectations of the user by having the user define an appropriate causal graph. Accordingly, these expectations are true to the user. We demonstrate the suitability of our method using real world data.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With current advances in Machine Learning and its growing use in high-impact scenarios, the demand for interpretable and explainable models becomes crucial. Causality research tries to go beyond statistical correlations by focusing on causal relationships, which is fundamental for Interpretable and Explainable Artificial Intelligence. In this paper, we perturb the input for explanation surrogates based on causal graphs. We present an approach to combine surrogate-based explanations with causal knowledge. We apply the perturbed data to the Local Interpretable Model-agnostic Explanations (LIME) approach to showcase how causal graphs improve explanations of surrogate models. We thus integrate features from both domains by adding a causal component to local explanations. The proposed approach enables explanations that suit the expectations of the user by having the user define an appropriate causal graph. Accordingly, these expectations are true to the user. We demonstrate the suitability of our method using real world data.
CIP-ES:解释替代物的因果输入扰动
随着当前机器学习的进步及其在高影响场景中的应用越来越多,对可解释和可解释模型的需求变得至关重要。因果关系研究试图超越统计相关性,关注因果关系,这是可解释和可解释人工智能的基础。在本文中,我们对基于因果图的解释代理的输入进行了扰动。我们提出了一种将基于代理的解释与因果知识相结合的方法。我们将扰动数据应用于局部可解释模型不可知论解释(LIME)方法,以展示因果图如何改进代理模型的解释。因此,我们通过在局部解释中添加因果成分来整合两个领域的特征。建议的方法通过让用户定义适当的因果图来实现符合用户期望的解释。因此,这些期望对用户来说是真实的。我们用真实世界的数据证明了我们的方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信