Efficient Search Result Diversification via Query Expansion Using Knowledge Bases

Raoul Rubien, Hermann Ziak, Roman Kern
{"title":"Efficient Search Result Diversification via Query Expansion Using Knowledge Bases","authors":"Raoul Rubien, Hermann Ziak, Roman Kern","doi":"10.1109/DEXA.2015.69","DOIUrl":null,"url":null,"abstract":"Underspecified search queries can be performed via result list diversification approaches, which are often computationally complex and require longer response times. In this paper, we explore an alternative, and more efficient way to diversify the result list based on query expansion. To that end, we used a knowledge base pseudo-relevance feedback algorithm. We compared our algorithm to IA-Select, a state-of-the-art diversification method, using its intent-aware version of the NDCG (Normalized Discounted Cumulative Gain) metric. The results indicate that our approach can guarantee a similar extent of diversification as IA-Select. In addition, we showed that the supported query language of the underlying search engines plays an important role in the query expansion based on diversification. Therefore, query expansion may be an alternative when result diversification is not feasible, for example in federated search systems where latency and the quantity of handled search results are critical issues.","PeriodicalId":239815,"journal":{"name":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2015.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Underspecified search queries can be performed via result list diversification approaches, which are often computationally complex and require longer response times. In this paper, we explore an alternative, and more efficient way to diversify the result list based on query expansion. To that end, we used a knowledge base pseudo-relevance feedback algorithm. We compared our algorithm to IA-Select, a state-of-the-art diversification method, using its intent-aware version of the NDCG (Normalized Discounted Cumulative Gain) metric. The results indicate that our approach can guarantee a similar extent of diversification as IA-Select. In addition, we showed that the supported query language of the underlying search engines plays an important role in the query expansion based on diversification. Therefore, query expansion may be an alternative when result diversification is not feasible, for example in federated search systems where latency and the quantity of handled search results are critical issues.
利用知识库扩展查询,实现高效的搜索结果多样化
未指定的搜索查询可以通过结果列表多样化方法执行,这种方法通常计算复杂,需要更长的响应时间。在本文中,我们探索了一种基于查询扩展的更有效的方法来多样化结果列表。为此,我们采用了知识库伪相关反馈算法。我们将我们的算法与IA-Select(一种最先进的多样化方法)进行了比较,IA-Select使用了NDCG(归一化贴现累积增益)指标的意图感知版本。结果表明,我们的方法可以保证与IA-Select相似的多样化程度。此外,我们还证明了底层搜索引擎所支持的查询语言在基于多样化的查询扩展中起着重要的作用。因此,在结果多样化不可行的情况下,查询扩展可能是另一种选择,例如在延迟和处理的搜索结果数量是关键问题的联邦搜索系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信