{"title":"Gaussian Approximations of SDES in Metropolis-Adjusted Langevin Algorithms","authors":"S. Särkkä, Christos Merkatas, T. Karvonen","doi":"10.1109/mlsp52302.2021.9596301","DOIUrl":null,"url":null,"abstract":"Markov chain Monte Carlo (MCMC) methods are a cornerstone of Bayesian inference and stochastic simulation. The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that relies on the simulation of a stochastic differential equation (SDE) whose stationary distribution is the desired target density using the Euler-Maruyama algorithm and accounts for simulation errors using a Metropolis step. In this paper we propose a modification of the MALA which uses Gaussian assumed density approximations for the integration of the SDE. The effectiveness of the algorithm is illustrated on simulated and real data sets.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Markov chain Monte Carlo (MCMC) methods are a cornerstone of Bayesian inference and stochastic simulation. The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that relies on the simulation of a stochastic differential equation (SDE) whose stationary distribution is the desired target density using the Euler-Maruyama algorithm and accounts for simulation errors using a Metropolis step. In this paper we propose a modification of the MALA which uses Gaussian assumed density approximations for the integration of the SDE. The effectiveness of the algorithm is illustrated on simulated and real data sets.