{"title":"SOLUSI PERSAMAAN DIFUSI PADA LARUTAN GULA DENGAN METODE BEDA HINGGA","authors":"Dedek Noviyani, Yundari, Yudhi","doi":"10.26418/bbimst.v8i3.34026","DOIUrl":null,"url":null,"abstract":"Difusi merupakan peristiwa berpindahnya suatu zat dalam pelarut dari bagian berkonsentrasi tinggi ke bagian berkonsentrasi rendah. Difusi dapat dinyatakan dalam bahasa matematika yaitu persamaan difusi yang merupakan persamaan diferensial parsial. Contoh sederhana dari difusi adalah pemberian gula pada air tawar yang lambat laun menjadi manis. Konsentrasi larutan gula dipengaruhi oleh banyaknya air dan waktu yang diperlukan untuk terdifusinya larutan gula. Tujuan penelitian ini adalah menyelesaikan persamaan difusi pada larutan gula dengan metode beda hingga, yaitu mendiskritisasi turunan sehingga menjadi suatu sistem persamaan linier, kemudian sistem persamaan linier yang terbentuk diselesaikan. Hasil penelitian ini menunjukkan bahwa semakin lama waktu difusi yang dilakukan maka konsentrasi larutan gula semakin rendah.Kata kunci: Persamaan Difusi, Persamaan Diferensial Parsial, Turunan Numerik, Metode Beda Hingga.","PeriodicalId":265420,"journal":{"name":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/bbimst.v8i3.34026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Difusi merupakan peristiwa berpindahnya suatu zat dalam pelarut dari bagian berkonsentrasi tinggi ke bagian berkonsentrasi rendah. Difusi dapat dinyatakan dalam bahasa matematika yaitu persamaan difusi yang merupakan persamaan diferensial parsial. Contoh sederhana dari difusi adalah pemberian gula pada air tawar yang lambat laun menjadi manis. Konsentrasi larutan gula dipengaruhi oleh banyaknya air dan waktu yang diperlukan untuk terdifusinya larutan gula. Tujuan penelitian ini adalah menyelesaikan persamaan difusi pada larutan gula dengan metode beda hingga, yaitu mendiskritisasi turunan sehingga menjadi suatu sistem persamaan linier, kemudian sistem persamaan linier yang terbentuk diselesaikan. Hasil penelitian ini menunjukkan bahwa semakin lama waktu difusi yang dilakukan maka konsentrasi larutan gula semakin rendah.Kata kunci: Persamaan Difusi, Persamaan Diferensial Parsial, Turunan Numerik, Metode Beda Hingga.