{"title":"3D Localization for Sub-Centimeter Sized Devices","authors":"R. Nandakumar, Vikram Iyer, Shyamnath Gollakota","doi":"10.1145/3274783.3274851","DOIUrl":null,"url":null,"abstract":"The vision of tracking small IoT devices runs into the reality of localization technologies --- today it is difficult to continuously track objects through walls in homes and warehouses on a coin cell battery. While Wi-Fi and ultra-wideband radios can provide tracking through walls, they do not last more than a month on small coin and button cell batteries since they consume tens of milliwatts of power. We present the first localization system that consumes microwatts of power at a mobile device and can be localized across multiple rooms in settings like homes and hospitals. To this end, we introduce a multi-band backscatter prototype that operates across 900 MHz, 2.4 and 5 GHz and can extract the backscatter phase information from signals that are below the noise floor. We build sub-centimeter sized prototypes which consume 93 μW and could last five to ten years on button cell batteries. We achieved ranges of up to 60 m away from the AP and accuracies of 2, 12, 50 and 145 cm at 1, 5, 30 and 60 m respectively. To demonstrate the potential of our design, we deploy it in two real-world scenarios: five homes in a metropolitan area and the surgery wing of a hospital in patient pre-op and post-op rooms as well as storage facilities.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3274851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86
Abstract
The vision of tracking small IoT devices runs into the reality of localization technologies --- today it is difficult to continuously track objects through walls in homes and warehouses on a coin cell battery. While Wi-Fi and ultra-wideband radios can provide tracking through walls, they do not last more than a month on small coin and button cell batteries since they consume tens of milliwatts of power. We present the first localization system that consumes microwatts of power at a mobile device and can be localized across multiple rooms in settings like homes and hospitals. To this end, we introduce a multi-band backscatter prototype that operates across 900 MHz, 2.4 and 5 GHz and can extract the backscatter phase information from signals that are below the noise floor. We build sub-centimeter sized prototypes which consume 93 μW and could last five to ten years on button cell batteries. We achieved ranges of up to 60 m away from the AP and accuracies of 2, 12, 50 and 145 cm at 1, 5, 30 and 60 m respectively. To demonstrate the potential of our design, we deploy it in two real-world scenarios: five homes in a metropolitan area and the surgery wing of a hospital in patient pre-op and post-op rooms as well as storage facilities.