Overbounding GNSS/INS Integration with Uncertain GNSS Gauss-Markov Error Parameters

Omar García Crespillo, M. Joerger, S. Langel
{"title":"Overbounding GNSS/INS Integration with Uncertain GNSS Gauss-Markov Error Parameters","authors":"Omar García Crespillo, M. Joerger, S. Langel","doi":"10.1109/PLANS46316.2020.9109874","DOIUrl":null,"url":null,"abstract":"The integration of GNSS with Inertial Navigation Systems (INS) has the potential to achieve high levels of continuity and availability as compared to standalone GNSS and therefore to satisfy stringent navigation requirements. However, robustly accounting for time-correlated measurement errors is a challenge when designing the Kalman filter (KF) used for GNSS/INS coupling. In particular, if the error processes are not fully known, the KF estimation error covariance can be misleading, which is problematic in safety-critical applications. In this paper, we design a GNSS/INS integration scheme that guarantees upper bounds on the estimation error variance assuming that measurement errors are first-order Gauss-Markov processes with parameters only known to reside within pre-established bounds. We evaluate the filter performance and guaranteed estimation by covariance analysis for a simulated precision approach procedure.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9109874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The integration of GNSS with Inertial Navigation Systems (INS) has the potential to achieve high levels of continuity and availability as compared to standalone GNSS and therefore to satisfy stringent navigation requirements. However, robustly accounting for time-correlated measurement errors is a challenge when designing the Kalman filter (KF) used for GNSS/INS coupling. In particular, if the error processes are not fully known, the KF estimation error covariance can be misleading, which is problematic in safety-critical applications. In this paper, we design a GNSS/INS integration scheme that guarantees upper bounds on the estimation error variance assuming that measurement errors are first-order Gauss-Markov processes with parameters only known to reside within pre-established bounds. We evaluate the filter performance and guaranteed estimation by covariance analysis for a simulated precision approach procedure.
GNSS高斯-马尔可夫误差参数不确定的GNSS/INS超边界集成
与独立的GNSS相比,GNSS与惯性导航系统(INS)的集成有可能实现高水平的连续性和可用性,从而满足严格的导航要求。然而,在设计用于GNSS/INS耦合的卡尔曼滤波器(KF)时,稳健地考虑时间相关测量误差是一个挑战。特别是,如果不完全了解错误过程,则KF估计误差协方差可能会产生误导,这在安全关键应用程序中是有问题的。在本文中,我们设计了一种GNSS/INS集成方案,该方案保证了估计误差方差的上界,假设测量误差是一阶高斯-马尔可夫过程,且参数仅在预先建立的范围内已知。我们通过协方差分析对模拟精度逼近过程的滤波性能和保证估计进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信