Using Communication Networks to Predict Team Performance in Massively Multiplayer Online Games

S. Müller, Raji Ghawi, J. Pfeffer
{"title":"Using Communication Networks to Predict Team Performance in Massively Multiplayer Online Games","authors":"S. Müller, Raji Ghawi, J. Pfeffer","doi":"10.1109/ASONAM49781.2020.9381481","DOIUrl":null,"url":null,"abstract":"Virtual teams are becoming increasingly important. Since they are digital in nature, their “trace data” enable a broad set of new research opportunities. Online Games are especially useful for studying social behavior patterns of collaborative teams. In our study we used longitudinal data from the Massively Multiplayer Online Game (MMOG) Travian collected over a 12-month period that included 4,753 teams with 18,056 individuals and their communication networks. For predicting team performance, we selected 13 SNA-based attributes frequently used in team and leadership research. Using machine learning algorithms, the added explanatory power derived from the patterns of the communication networks enabled us to achieve an adjusted R2 = 0.67 in the best fitting performance prediction model and a prediction accuracy of up to 95.3% in the classification of top performing teams.","PeriodicalId":196317,"journal":{"name":"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM49781.2020.9381481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Virtual teams are becoming increasingly important. Since they are digital in nature, their “trace data” enable a broad set of new research opportunities. Online Games are especially useful for studying social behavior patterns of collaborative teams. In our study we used longitudinal data from the Massively Multiplayer Online Game (MMOG) Travian collected over a 12-month period that included 4,753 teams with 18,056 individuals and their communication networks. For predicting team performance, we selected 13 SNA-based attributes frequently used in team and leadership research. Using machine learning algorithms, the added explanatory power derived from the patterns of the communication networks enabled us to achieve an adjusted R2 = 0.67 in the best fitting performance prediction model and a prediction accuracy of up to 95.3% in the classification of top performing teams.
利用通讯网络预测大型多人在线游戏中的团队表现
虚拟团队正变得越来越重要。由于它们本质上是数字化的,它们的“追踪数据”提供了广泛的新研究机会。在线游戏对于研究协作团队的社会行为模式特别有用。在我们的研究中,我们使用了大型多人在线游戏(MMOG) Travian在12个月期间收集的纵向数据,其中包括4,753个团队,18,056个人及其通信网络。为了预测团队绩效,我们选择了在团队和领导力研究中经常使用的13个基于sna的属性。使用机器学习算法,从通信网络模式中获得的额外解释力使我们能够在最佳拟合性能预测模型中实现调整后的R2 = 0.67,并在最佳表现团队分类中实现高达95.3%的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信