Plug-and-play measurement fusion method for integrated navigation system using low-cost nonlinear optimization

Lingxiao Zheng, X. Zhan, Xin Zhang
{"title":"Plug-and-play measurement fusion method for integrated navigation system using low-cost nonlinear optimization","authors":"Lingxiao Zheng, X. Zhan, Xin Zhang","doi":"10.1109/CPGPS.2017.8075098","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of plug and play measurement fusion for integrated navigation system using nonlinear optimization method. We refer to multi-sensor fusion estimation as a sequential, weighted least squares problem. Using fluid re-linearization and partial state updates strategies to reduce computational burden, we propose a low cost nonlinear optimization algorithm. This algorithm not only processes multirate and asynchronous sensor data, but also provides a natural way to incorporate a new sensor or an ad hoc signal into the system. The proposed multi-sensor fusion estimation algorithm has been successfully implemented in integrated navigation with inertial measurement unit, global position system and star sensor.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of plug and play measurement fusion for integrated navigation system using nonlinear optimization method. We refer to multi-sensor fusion estimation as a sequential, weighted least squares problem. Using fluid re-linearization and partial state updates strategies to reduce computational burden, we propose a low cost nonlinear optimization algorithm. This algorithm not only processes multirate and asynchronous sensor data, but also provides a natural way to incorporate a new sensor or an ad hoc signal into the system. The proposed multi-sensor fusion estimation algorithm has been successfully implemented in integrated navigation with inertial measurement unit, global position system and star sensor.
基于低成本非线性优化的组合导航系统即插即用测量融合方法
本文采用非线性优化方法解决了组合导航系统即插即用测量融合问题。我们把多传感器融合估计看作是一个顺序的加权最小二乘问题。为了减少计算量,采用流体再线性化和部分状态更新策略,提出了一种低成本的非线性优化算法。该算法不仅处理多速率和异步传感器数据,而且还提供了一种将新传感器或自组织信号纳入系统的自然方法。所提出的多传感器融合估计算法已成功应用于惯性测量单元、全球定位系统和星敏感器组合导航中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信