{"title":"A Read-leveling Data Distribution Scheme for Promoting Read Performance in SSDs with Deduplication","authors":"Mengting Lu, F. Wang, D. Feng, Yuchong Hu","doi":"10.1145/3337821.3337884","DOIUrl":null,"url":null,"abstract":"Deduplication, as a space-saving technology, is widely deployed in the flash-based storage systems to address the capacity and endurance limitations of flash devices. In this paper, we find that deduplication changes the physical data layout, which raises the chances of the uneven read distribution. This uneven read distribution not only increases the access contention but also deteriorates the read parallelism, thus leading to the read performance degradation. To solve this issue, we propose an efficient read-leveling data distribution scheme (RLDDS), which scatters the highly-duplicated data into different parallel units, to improve the read performance for SSDs with deduplication for access-intensive workloads. RLDDS writes data into a parallel unit with lower potential read-hotness to balance the read distribution among all the parallel units. Extensive experimental results show that RLDDS effectively improves the read performance by up to 21.61% compared to deduplication with the conventional dynamic data allocation scheme. Additional benefits of RLDDS include the promoted write performance (up to 23.69%) in access-intensive workloads and the overall system performance improvement (up to 18.22%) with the same write traffic reduction.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Deduplication, as a space-saving technology, is widely deployed in the flash-based storage systems to address the capacity and endurance limitations of flash devices. In this paper, we find that deduplication changes the physical data layout, which raises the chances of the uneven read distribution. This uneven read distribution not only increases the access contention but also deteriorates the read parallelism, thus leading to the read performance degradation. To solve this issue, we propose an efficient read-leveling data distribution scheme (RLDDS), which scatters the highly-duplicated data into different parallel units, to improve the read performance for SSDs with deduplication for access-intensive workloads. RLDDS writes data into a parallel unit with lower potential read-hotness to balance the read distribution among all the parallel units. Extensive experimental results show that RLDDS effectively improves the read performance by up to 21.61% compared to deduplication with the conventional dynamic data allocation scheme. Additional benefits of RLDDS include the promoted write performance (up to 23.69%) in access-intensive workloads and the overall system performance improvement (up to 18.22%) with the same write traffic reduction.