Operational Risk in Semiconductor Fabrication Using Binary Classification Algorithms and Monte Carlo Simulation, a Systemic Review

D. Patnaik, S. R., D. Suresh
{"title":"Operational Risk in Semiconductor Fabrication Using Binary Classification Algorithms and Monte Carlo Simulation, a Systemic Review","authors":"D. Patnaik, S. R., D. Suresh","doi":"10.1109/irtm54583.2022.9791608","DOIUrl":null,"url":null,"abstract":"The manufacturing processes involved in the fabrication of semiconductor devices are very prone to error due to its extremely intricate nature. There are several hundred processes and the process of detection of a defect is extremely capital and time consuming. In this paper, we aim to analyze the fabrication process and analyze manufacturing machine data in order to determine the average probability of excursion and the loss associated with these excursions using binary classification prediction algorithms and Monte Carlo simulations.","PeriodicalId":426354,"journal":{"name":"2022 Interdisciplinary Research in Technology and Management (IRTM)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Interdisciplinary Research in Technology and Management (IRTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/irtm54583.2022.9791608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The manufacturing processes involved in the fabrication of semiconductor devices are very prone to error due to its extremely intricate nature. There are several hundred processes and the process of detection of a defect is extremely capital and time consuming. In this paper, we aim to analyze the fabrication process and analyze manufacturing machine data in order to determine the average probability of excursion and the loss associated with these excursions using binary classification prediction algorithms and Monte Carlo simulations.
基于二元分类算法和蒙特卡罗模拟的半导体制造操作风险研究
半导体器件的制造过程由于其极其复杂的性质,非常容易出错。有几百个过程,检测缺陷的过程是非常耗时和昂贵的。在本文中,我们的目的是分析制造过程和分析制造机器数据,以确定偏移的平均概率和与这些偏移相关的损失,使用二分类预测算法和蒙特卡罗模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信