{"title":"On control-specific derivation of affine Takagi-Sugeno models from physical models: Assessment criteria and modeling procedure","authors":"A. Kroll, Axel Dürrbaum","doi":"10.1109/CICA.2011.5945746","DOIUrl":null,"url":null,"abstract":"Models are commonly derived and their performance is assessed wrt. minimal prediction error on a closed data set. However, if no perfect model can be used, the degrees of freedom in modeling should be used to adjust the model to application-specific metrics. For model-based controller design, control-oriented performance metrics (e.g. performance wrt. to control-critical properties) are important, but not primarily prediction (i.e. prognosis- and simulation-oriented) ones. This motivates the derivation of control-specific models. The contribution introduces structured and quantitative measures on “model suitability for control” for the class of affine dynamic Takagi-Sugeno models. A method is suggested that derives control-specific dynamic models from a physical model given as a set of nonlinear differential equations. Within a case study, the proposed method demonstrates its significance: Using control-specific models improves control performance metrics such as set-point tracking quality, stability region and energy efficiency. Nonlinear dynamic modeling, Takagi-Sugeno systems, modeling for control","PeriodicalId":420555,"journal":{"name":"Computational Intelligence in Control and Automation (CICA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2011.5945746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Models are commonly derived and their performance is assessed wrt. minimal prediction error on a closed data set. However, if no perfect model can be used, the degrees of freedom in modeling should be used to adjust the model to application-specific metrics. For model-based controller design, control-oriented performance metrics (e.g. performance wrt. to control-critical properties) are important, but not primarily prediction (i.e. prognosis- and simulation-oriented) ones. This motivates the derivation of control-specific models. The contribution introduces structured and quantitative measures on “model suitability for control” for the class of affine dynamic Takagi-Sugeno models. A method is suggested that derives control-specific dynamic models from a physical model given as a set of nonlinear differential equations. Within a case study, the proposed method demonstrates its significance: Using control-specific models improves control performance metrics such as set-point tracking quality, stability region and energy efficiency. Nonlinear dynamic modeling, Takagi-Sugeno systems, modeling for control