Robust Image Forgery Detection Using Point Feature Analysis

Youssef William, S. Safwat, M. A. Salem
{"title":"Robust Image Forgery Detection Using Point Feature Analysis","authors":"Youssef William, S. Safwat, M. A. Salem","doi":"10.15439/2019F227","DOIUrl":null,"url":null,"abstract":"Day for day it becomes easier to temper digital images. Thus, people are in need of various forgery image detection. In this paper, we present forgery image detection techniques for two of the most common image tampering techniques; copy-move and splicing. We use match points technique after feature extraction process using SIFT and SURF. For splicing detection, we extracted the edges of the integral images of $Y, C_{b}$, and $C_{r}$ image components. GLCM is applied for each edge integral image and the feature vector is formed. The feature vector is then fed to a SVM classifier. For the copy-move, the results show that SURF feature extraction can be more efficient than SIFT, where we achieved 80% accuracy of detecting tempered images. On the other hand, processing the image in $YC _{b}C_{r}$ color model is found to give promising results in splicing image detection. We have achieved 99% true positive rate for detecting splicing images.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Day for day it becomes easier to temper digital images. Thus, people are in need of various forgery image detection. In this paper, we present forgery image detection techniques for two of the most common image tampering techniques; copy-move and splicing. We use match points technique after feature extraction process using SIFT and SURF. For splicing detection, we extracted the edges of the integral images of $Y, C_{b}$, and $C_{r}$ image components. GLCM is applied for each edge integral image and the feature vector is formed. The feature vector is then fed to a SVM classifier. For the copy-move, the results show that SURF feature extraction can be more efficient than SIFT, where we achieved 80% accuracy of detecting tempered images. On the other hand, processing the image in $YC _{b}C_{r}$ color model is found to give promising results in splicing image detection. We have achieved 99% true positive rate for detecting splicing images.
基于点特征分析的鲁棒图像伪造检测
随着时间的推移,处理数码图像变得越来越容易。因此,人们需要对各种伪造图像进行检测。在本文中,我们提出了两种最常见的图像篡改技术的伪造图像检测技术;复制移动和拼接。在SIFT和SURF特征提取过程之后,采用匹配点技术。对于拼接检测,我们提取了$Y, $C_{b}$和$C_{r}$图像分量的积分图像的边缘。对每幅边缘积分图像应用GLCM,形成特征向量。然后将特征向量馈送到支持向量机分类器。对于复制-移动,结果表明SURF特征提取比SIFT更有效,在SIFT中我们可以达到80%的调和图像检测准确率。另一方面,在$ yc_ {b}C_{r}$颜色模型中对图像进行处理,在拼接图像检测方面取得了很好的效果。我们对拼接图像的检测达到了99%的真阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信