History Semantic Graph Enhanced Conversational KBQA with Temporal Information Modeling

Hao-Lun Sun, Y. Li, Li Deng, Bowen Li, Binyuan Hui, Binhua Li, Yunshi Lan, Yan Zhang, Yongbin Li
{"title":"History Semantic Graph Enhanced Conversational KBQA with Temporal Information Modeling","authors":"Hao-Lun Sun, Y. Li, Li Deng, Bowen Li, Binyuan Hui, Binhua Li, Yunshi Lan, Yan Zhang, Yongbin Li","doi":"10.48550/arXiv.2306.06872","DOIUrl":null,"url":null,"abstract":"Context information modeling is an important task in conversational KBQA. However, existing methods usually assume the independence of utterances and model them in isolation. In this paper, we propose a History Semantic Graph Enhanced KBQA model (HSGE) that is able to effectively model long-range semantic dependencies in conversation history while maintaining low computational cost. The framework incorporates a context-aware encoder, which employs a dynamic memory decay mechanism and models context at different levels of granularity. We evaluate HSGE on a widely used benchmark dataset for complex sequential question answering. Experimental results demonstrate that it outperforms existing baselines averaged on all question types.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.06872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Context information modeling is an important task in conversational KBQA. However, existing methods usually assume the independence of utterances and model them in isolation. In this paper, we propose a History Semantic Graph Enhanced KBQA model (HSGE) that is able to effectively model long-range semantic dependencies in conversation history while maintaining low computational cost. The framework incorporates a context-aware encoder, which employs a dynamic memory decay mechanism and models context at different levels of granularity. We evaluate HSGE on a widely used benchmark dataset for complex sequential question answering. Experimental results demonstrate that it outperforms existing baselines averaged on all question types.
基于时态信息建模的历史语义图增强会话KBQA
上下文信息建模是会话式KBQA中的一项重要任务。然而,现有的方法通常假设话语的独立性,并孤立地建模。在本文中,我们提出了一种历史语义图增强的KBQA模型(HSGE),该模型能够有效地对会话历史中的远程语义依赖进行建模,同时保持较低的计算成本。该框架包含一个上下文感知编码器,该编码器采用动态内存衰减机制,并在不同粒度级别上对上下文进行建模。我们在一个广泛使用的复杂顺序问答基准数据集上评估HSGE。实验结果表明,它在所有问题类型上都优于现有的平均基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信