Autoencoder based API Recommendation System for Android Programming

Jinyang Liu, Ye Qiu, Zhiyi Ma, Zhonghai Wu
{"title":"Autoencoder based API Recommendation System for Android Programming","authors":"Jinyang Liu, Ye Qiu, Zhiyi Ma, Zhonghai Wu","doi":"10.1109/ICCSE.2019.8845349","DOIUrl":null,"url":null,"abstract":"As a typical example of modern Information Technologies, Android platform and Apps are widely used by smartphone users all over the world. Thus, the research of designing models for assisting programmers in writing Android codes is of great importance and value, and recommending API usages is a stereotype task in this aspect. This paper applies Autoencoder neural networks into the model of API recommendation system for Android programming, and designs new Autoencoder based Android API recommendation system. This paper carries out experiments on the collected Android code dataset and verifies the effectiveness of the newly designed models compared with classical recommendation models.","PeriodicalId":351346,"journal":{"name":"2019 14th International Conference on Computer Science & Education (ICCSE)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2019.8845349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As a typical example of modern Information Technologies, Android platform and Apps are widely used by smartphone users all over the world. Thus, the research of designing models for assisting programmers in writing Android codes is of great importance and value, and recommending API usages is a stereotype task in this aspect. This paper applies Autoencoder neural networks into the model of API recommendation system for Android programming, and designs new Autoencoder based Android API recommendation system. This paper carries out experiments on the collected Android code dataset and verifies the effectiveness of the newly designed models compared with classical recommendation models.
基于自编码器的Android编程API推荐系统
作为现代信息技术的典型代表,Android平台和应用程序被全球智能手机用户广泛使用。因此,研究帮助程序员编写Android代码的设计模型是非常重要和有价值的,而推荐API的使用是这方面的一项定型任务。本文将Autoencoder神经网络应用到Android编程API推荐系统模型中,设计了一种新的基于Autoencoder的Android API推荐系统。本文在收集的Android代码数据集上进行了实验,并与经典推荐模型进行了对比,验证了新设计模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信