Priority ordered architecture of neural networks

Wang Shoujue, Lu Huaxiang, C. Xiangdong, Li Yujian
{"title":"Priority ordered architecture of neural networks","authors":"Wang Shoujue, Lu Huaxiang, C. Xiangdong, Li Yujian","doi":"10.1109/IJCNN.1999.831054","DOIUrl":null,"url":null,"abstract":"In the architecture introduced, outputs of neurons (or neural nets) have different priorities, beside the differences in topological position and value of these outputs. We discuss how priority ordered neural networks (PONNs) have similarity to knowledge representation in the human brain. Also a general mathematical description of the PONN is introduced. The priority ordered single layer perceptron (POSLP) and the priority ordered radial basis function nets (PORBFN) for pattern classification are analyzed. The experiment shows that the learning speed of the POSLP and PORBFN are much faster than that of the multilayered feedforward neural networks with existing BP algorithms.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the architecture introduced, outputs of neurons (or neural nets) have different priorities, beside the differences in topological position and value of these outputs. We discuss how priority ordered neural networks (PONNs) have similarity to knowledge representation in the human brain. Also a general mathematical description of the PONN is introduced. The priority ordered single layer perceptron (POSLP) and the priority ordered radial basis function nets (PORBFN) for pattern classification are analyzed. The experiment shows that the learning speed of the POSLP and PORBFN are much faster than that of the multilayered feedforward neural networks with existing BP algorithms.
神经网络的优先级排序结构
在介绍的体系结构中,除了这些输出的拓扑位置和值不同之外,神经元(或神经网络)的输出具有不同的优先级。我们讨论了优先顺序神经网络(ponn)如何与人脑中的知识表示具有相似性。同时介绍了PONN的一般数学描述。分析了优先顺序单层感知器(POSLP)和优先顺序径向基函数网(PORBFN)的模式分类方法。实验表明,POSLP和PORBFN的学习速度比现有BP算法的多层前馈神经网络要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信