A Named Entity Recognition Model Based on Entity Trigger Reinforcement Learning

Ping Wang, Nong Si, Haopeng Tong
{"title":"A Named Entity Recognition Model Based on Entity Trigger Reinforcement Learning","authors":"Ping Wang, Nong Si, Haopeng Tong","doi":"10.1109/CCAI55564.2022.9807747","DOIUrl":null,"url":null,"abstract":"Named entity recognition is a practical approach to automatically identifying named entities in text and data. Towards the vast amount of data generated in our daily life, Artificial Intelligence (AI) with economical but powerful computing resources are inevitably becoming the most appropriate method for name entities classification. However, the results of currently popular methods may also lack the aiming super high accuracy to specific data and the interests of the subscribers. This paper proposes a named entity recognition model based on entity trigger reinforcement learning for automatic Chinese recognition. Unlike existing named entity recognition methods, the proposed method can support multiple inputs. The accuracy proof and performance evaluation show that the proposed method is provable robotic in entity categories classification and efficient in practice.","PeriodicalId":340195,"journal":{"name":"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAI55564.2022.9807747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Named entity recognition is a practical approach to automatically identifying named entities in text and data. Towards the vast amount of data generated in our daily life, Artificial Intelligence (AI) with economical but powerful computing resources are inevitably becoming the most appropriate method for name entities classification. However, the results of currently popular methods may also lack the aiming super high accuracy to specific data and the interests of the subscribers. This paper proposes a named entity recognition model based on entity trigger reinforcement learning for automatic Chinese recognition. Unlike existing named entity recognition methods, the proposed method can support multiple inputs. The accuracy proof and performance evaluation show that the proposed method is provable robotic in entity categories classification and efficient in practice.
基于实体触发强化学习的命名实体识别模型
命名实体识别是一种自动识别文本和数据中的命名实体的实用方法。面对我们日常生活中产生的海量数据,具有经济而强大计算资源的人工智能(AI)不可避免地成为名称实体分类最合适的方法。然而,目前流行的方法的结果也可能缺乏针对特定数据和用户兴趣的超高精度。提出了一种基于实体触发强化学习的命名实体识别模型,用于中文自动识别。与现有的命名实体识别方法不同,该方法支持多输入。精度证明和性能评价表明,该方法在实体类别分类中是机器人化的,在实践中是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信