Decoupled control of an active magnetic bearing system for a high gyroscopic rotor

M. Hutterer, M. Hofer, M. Schrödl
{"title":"Decoupled control of an active magnetic bearing system for a high gyroscopic rotor","authors":"M. Hutterer, M. Hofer, M. Schrödl","doi":"10.1109/ICMECH.2015.7083976","DOIUrl":null,"url":null,"abstract":"Control design for coupled MIMO-Systems (Multiple Input and Multiple Output) like a 5-DOF (degree of freedom) AMB (active magnetic bearing) system needs a high knowledge in control theory. This paper describes a model based approach for decoupled control design. To decouple the system an input and an output transformation is used and all control parts are developed in the so called center of gravity (COG) coordinate system. One of the main problems is the stabilization of the rotor for a high speed range. This problem is solved by a parameter variant feedback path, which transforms the linear parameter variant system in a linear parameter invariant system. This feedback path requires the angular velocity and the velocities of the degrees of freedom for calculation. The angular velocity can be used from the motor controller. For the other velocities a Kalman observer is used. This Kalman observer is developed only in the center of gravity coordinates, because in this coordinate system the observer needs less computing power. The stability and robustness of the closed loop system is verified by simulations and experimental results.","PeriodicalId":179621,"journal":{"name":"2015 IEEE International Conference on Mechatronics (ICM)","volume":"286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2015.7083976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Control design for coupled MIMO-Systems (Multiple Input and Multiple Output) like a 5-DOF (degree of freedom) AMB (active magnetic bearing) system needs a high knowledge in control theory. This paper describes a model based approach for decoupled control design. To decouple the system an input and an output transformation is used and all control parts are developed in the so called center of gravity (COG) coordinate system. One of the main problems is the stabilization of the rotor for a high speed range. This problem is solved by a parameter variant feedback path, which transforms the linear parameter variant system in a linear parameter invariant system. This feedback path requires the angular velocity and the velocities of the degrees of freedom for calculation. The angular velocity can be used from the motor controller. For the other velocities a Kalman observer is used. This Kalman observer is developed only in the center of gravity coordinates, because in this coordinate system the observer needs less computing power. The stability and robustness of the closed loop system is verified by simulations and experimental results.
高陀螺转子主动磁轴承系统的解耦控制
耦合mimo系统(多输入多输出)的控制设计,如五自由度主动磁轴承系统,需要较高的控制理论知识。本文提出了一种基于模型的解耦控制设计方法。为了解耦系统,使用了输入和输出变换,并且所有控制部分都在所谓的重心(COG)坐标系中进行开发。其中一个主要问题是转子在高速范围内的稳定性。通过参数变反馈路径将线性参数变系统转化为线性参数不变系统来解决这一问题。该反馈路径需要角速度和自由度的速度进行计算。角速度可以从电机控制器中使用。对于其他速度使用卡尔曼观测器。该卡尔曼观测器仅在重心坐标系下开发,因为在该坐标系下观测器需要较少的计算能力。仿真和实验结果验证了闭环系统的稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信