Minimality Notions via Factorization Systems

Thorsten Wißmann
{"title":"Minimality Notions via Factorization Systems","authors":"Thorsten Wißmann","doi":"10.46298/lmcs-18(3:31)2022","DOIUrl":null,"url":null,"abstract":"For the minimization of state-based systems (i.e. the reduction of the number\nof states while retaining the system's semantics), there are two obvious\naspects: removing unnecessary states of the system and merging redundant states\nin the system. In the present article, we relate the two minimization aspects\non coalgebras by defining an abstract notion of minimality.\n The abstract notions minimality and minimization live in a general category\nwith a factorization system. We will find criteria on the category that ensure\nuniqueness, existence, and functoriality of the minimization aspects. The\nproofs of these results instantiate to those for reachability and observability\nminimization in the standard coalgebra literature. Finally, we will see how the\ntwo aspects of minimization interact and under which criteria they can be\nsequenced in any order, like in automata minimization.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(3:31)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the minimization of state-based systems (i.e. the reduction of the number of states while retaining the system's semantics), there are two obvious aspects: removing unnecessary states of the system and merging redundant states in the system. In the present article, we relate the two minimization aspects on coalgebras by defining an abstract notion of minimality. The abstract notions minimality and minimization live in a general category with a factorization system. We will find criteria on the category that ensure uniqueness, existence, and functoriality of the minimization aspects. The proofs of these results instantiate to those for reachability and observability minimization in the standard coalgebra literature. Finally, we will see how the two aspects of minimization interact and under which criteria they can be sequenced in any order, like in automata minimization.
通过分解系统的最小概念
对于基于状态的系统的最小化(即在保留系统语义的同时减少状态的数量),有两个明显的方面:删除系统的不必要状态和合并系统中的冗余状态。在这篇文章中,我们通过定义一个抽象的极小性概念,将两个极小性方面联系起来。抽象概念极小性和极小化存在于分解系统的一般范畴中。我们将找到确保最小化方面的唯一性、存在性和功能性的类别标准。这些结果的证明实例化了标准协代数文献中关于可达性和可观察性最小化的证明。最后,我们将看到最小化的两个方面是如何相互作用的,以及在哪些标准下它们可以按任何顺序排序,就像在自动最小化中一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信