IISM: an image internal semantic model for image database based on relevance feedback

Lijuan Duan, Wen Gao
{"title":"IISM: an image internal semantic model for image database based on relevance feedback","authors":"Lijuan Duan, Wen Gao","doi":"10.1109/WI.2003.1241258","DOIUrl":null,"url":null,"abstract":"A semantic model - IISM (image internal semantic model) is introduced. Unlike other semantic extracting methods, IISM extracts the semantic information not by image segmentation and image understanding, but by analyzing relevance feedback image retrieval results. For relevance feedback image retrieval system, the images relevant to query are pointed as positive example, otherwise the images irrelevant to query are pointed as negative examples. It is assumed that these positive examples are related in semantic content. IISM computes comprehensive pair-wise mutual information for all images through analyzing the results of relevance feedback image retrieval. An association with a high mutual information means that one image is semantically associated with another. Semantic retrieval and clustering is carried out based on these association relationships.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A semantic model - IISM (image internal semantic model) is introduced. Unlike other semantic extracting methods, IISM extracts the semantic information not by image segmentation and image understanding, but by analyzing relevance feedback image retrieval results. For relevance feedback image retrieval system, the images relevant to query are pointed as positive example, otherwise the images irrelevant to query are pointed as negative examples. It is assumed that these positive examples are related in semantic content. IISM computes comprehensive pair-wise mutual information for all images through analyzing the results of relevance feedback image retrieval. An association with a high mutual information means that one image is semantically associated with another. Semantic retrieval and clustering is carried out based on these association relationships.
IISM:一种基于关联反馈的图像数据库内部语义模型
介绍了图像内部语义模型(IISM)。与其他语义提取方法不同,IISM不是通过图像分割和图像理解来提取语义信息,而是通过分析相关反馈的图像检索结果来提取语义信息。对于相关反馈图像检索系统,将与查询相关的图像指向为正例,将与查询无关的图像指向为负例。假设这些肯定例在语义内容上是相互关联的。IISM通过分析相关反馈图像检索的结果,计算出所有图像的综合成对互信息。具有高互信息的关联意味着一个图像在语义上与另一个图像相关联。基于这些关联关系进行语义检索和聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信