{"title":"Ternary approximating non-stationary subdivision schemes for curve design","authors":"S. Siddiqi, M. Younis","doi":"10.2478/s13531-013-0149-y","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm has been introduced to produce ternary 2m-point (for any integer m ≥ 1) approximating non-stationary subdivision schemes which can generate the linear spaces spanned by {1; cos(α.); sin(α.)}. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the schemes. The proposed algorithm can be consider as the non-stationary counter part of the 2-point and 4-point existing ternary stationary approximating schemes, for different values of m. Moreover, the proposed algorithm has the ability to reproduce or regenerate the conic sections, trigonometric polynomials and trigonometric splines.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0149-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, an algorithm has been introduced to produce ternary 2m-point (for any integer m ≥ 1) approximating non-stationary subdivision schemes which can generate the linear spaces spanned by {1; cos(α.); sin(α.)}. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the schemes. The proposed algorithm can be consider as the non-stationary counter part of the 2-point and 4-point existing ternary stationary approximating schemes, for different values of m. Moreover, the proposed algorithm has the ability to reproduce or regenerate the conic sections, trigonometric polynomials and trigonometric splines.