Axial Synchronous Magnetic Coupling Modeling and Printing with Selective Laser Melting

H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin, A. Belahcen
{"title":"Axial Synchronous Magnetic Coupling Modeling and Printing with Selective Laser Melting","authors":"H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin, A. Belahcen","doi":"10.1109/RTUCON48111.2019.8982344","DOIUrl":null,"url":null,"abstract":"Today, dedicated metal 3D printing platforms can produce industrial grade homo-material metal components, promoting the fabrication of soft magnetic components for electrical machines with three-dimensionally optimized topologies. The printed components have been shown to exhibit excellent DC magnetic properties, indicating the maturity of the technology for applications incorporating quasi-static magnetic fields, such as magnetic couplings or rotors of synchronous machines. In the paper, finite element modeling of a synchronous reluctance magnetic coupling is investigated. Previously 3D printed and researched material of electrical steel with 6.5% added silicon content with selective laser melting is adopted in the model, alongside the printing limitations of the printing system. Commercial finite element modeling software COMSOL Multiphysics is employed for modeling. Printing of the modeled coupling was currently unsuccessful due to unoptimized printing parameters.","PeriodicalId":317349,"journal":{"name":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"32 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON48111.2019.8982344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Today, dedicated metal 3D printing platforms can produce industrial grade homo-material metal components, promoting the fabrication of soft magnetic components for electrical machines with three-dimensionally optimized topologies. The printed components have been shown to exhibit excellent DC magnetic properties, indicating the maturity of the technology for applications incorporating quasi-static magnetic fields, such as magnetic couplings or rotors of synchronous machines. In the paper, finite element modeling of a synchronous reluctance magnetic coupling is investigated. Previously 3D printed and researched material of electrical steel with 6.5% added silicon content with selective laser melting is adopted in the model, alongside the printing limitations of the printing system. Commercial finite element modeling software COMSOL Multiphysics is employed for modeling. Printing of the modeled coupling was currently unsuccessful due to unoptimized printing parameters.
轴向同步磁耦合建模与选择性激光熔化打印
如今,专用的金属3D打印平台可以生产工业级同质材料金属部件,促进了具有三维优化拓扑结构的电机软磁部件的制造。打印的组件已被证明具有优异的直流磁性,这表明该技术在结合准静态磁场的应用方面已经成熟,例如同步电机的磁联轴器或转子。本文研究了同步磁阻联轴器的有限元模型。模型采用先前3D打印和研究的电工钢材料,添加6.5%硅含量,选择性激光熔化,同时考虑到打印系统的打印限制。采用商用有限元建模软件COMSOL Multiphysics进行建模。由于未优化打印参数,建模耦合的打印目前不成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信