Extensible Modeling Framework for Reliable Machine Learning System Analysis

Jati H. Husen, H. Washizaki, H. Tun, Nobukazu Yoshioka, Y. Fukazawa, Hironori Takeuchi, Hiroshi Tanaka, Kazuki Munakata
{"title":"Extensible Modeling Framework for Reliable Machine Learning System Analysis","authors":"Jati H. Husen, H. Washizaki, H. Tun, Nobukazu Yoshioka, Y. Fukazawa, Hironori Takeuchi, Hiroshi Tanaka, Kazuki Munakata","doi":"10.1109/CAIN58948.2023.00022","DOIUrl":null,"url":null,"abstract":"Machine learning system analysis requires different approaches for each different task and domain. Selecting a proper set of analytic models can be challenging for a specific problem. This paper discusses the extensibility of the Multi-View Modeling Framework for ML Systems approach using process mapping and extensible metamodel. We conducted a case study to evaluate the feasibility of such extensibility by extending the approach to facilitate an activity-driven analysis for an optical character recognition system. Based on the result of the case study, we found that Multi-View Modeling Framework for ML Systems is likely to be extensible.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning system analysis requires different approaches for each different task and domain. Selecting a proper set of analytic models can be challenging for a specific problem. This paper discusses the extensibility of the Multi-View Modeling Framework for ML Systems approach using process mapping and extensible metamodel. We conducted a case study to evaluate the feasibility of such extensibility by extending the approach to facilitate an activity-driven analysis for an optical character recognition system. Based on the result of the case study, we found that Multi-View Modeling Framework for ML Systems is likely to be extensible.
可靠机器学习系统分析的可扩展建模框架
机器学习系统分析需要针对不同的任务和领域采用不同的方法。对于特定的问题,选择一组合适的分析模型可能具有挑战性。本文利用过程映射和可扩展元模型讨论了机器学习系统多视图建模框架方法的可扩展性。我们进行了一个案例研究,通过扩展该方法来促进光学字符识别系统的活动驱动分析,以评估这种可扩展性的可行性。基于案例研究的结果,我们发现机器学习系统的多视图建模框架可能是可扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信